.


:




:

































 

 

 

 


Laboratory work 71 atomic spectrums




(COMPUTER VARIANT)

The aim: investigation of atomic spectrum; define the Planks constant.

Instrumentation and appliances: computer.

Course of the work

 

1. Examine the spectrums of the radiation of helium, hydrogen and mercury.

2. Examine the spectrum of the Suns radiation.

Pay attention to yellow, light-green and blue line of mercury on long-wave part of helium spectrum. Define from what levels 4 lines of the spectrum of the hydrogen appear. Have in mind that for all line of the visible spectrum transition is realized on the second quantum level.

3. Measure the lengths of the waves of the spectrum of the hydrogen radiation.

Do the measurements with a virtual rules. The rules moves up and down at snub by mouse on field from the side of spectrum.

4. Define the frequencies for these line.

On measured length of the waves calculate the frequencies of these four lines.

5. Define the Planks constant.

On formulas of Born theories calculate a Planks constant for these four lines, but the results do average.

6. Do the conclusion.

In conclusion pay attention to the lengths of the radiation and absorptions lines. Also pay attention to spectrum regularities and possibility on spectrums lookout to define the Planks constant.

 

 

Authors: Serpetsky B.A., the reader, candidate of physical and mathematical sciences.

Reviewer: Loskutov S.V., professor, doctor of physical and mathematical sciences.

 

 

(. .) - . , , .

- , . ij , . 㳿 . . , . , .

. . 1960 . . - - , . . . . 䳿.

. ., , Ne ( = 0,2358 = 0,3328 ) N2 ( = 0,3371 ). 䳺 .

. . - . . (. ) . . . . , . ³ . ., .

, . , 㳿. ( ). , , . . . 10-5 - 10-4 , 10-4 - 10-3 .

, (, ) . 㳿 . 㳿 . , 㳿 , . , .

, . . 񳺿 . . . , . . 10-11,

 

(22.1)

 

. 㳿, , . . , .

. . (, , ), . , , 㳿, , , . - , . 㳺 h = - , , .

(22.2)

(22.3)

( ) - , . , , . ., , . ( ). .. ( ). , , ( ) , 㳿. 㳿 , , . . . . , .

- 㳿, ( ). 㳿 (.12.1).

: , . . , 㳿 . - .

- (. , , 1960). - Ne. 㳿 . Ne 1 㳿 E3. Ne E3 , E1 E2, E2 E3. . E3 . NT ( 㳺 E1) , NT , . . E2 , . E2 . NT , , , , , 7 . . ., ( (. )) NT 㳿 E2 E3 .

г , . - 30 . . . . .

- - ( ). 1 . . ., 10 , NT. . 2 - , . 1,5 , , 볺 (). (8 , 1000 ) ( 127 ) . ( 48 51 ) 2 , . , , ' . . 10 000 .

- , 0,01%, , . - ( = 0,6328 ) ( , , ). - ' , (. ) (. ).

(. , , . , . -, , 1964). , , , .. 㳿, , , (. ). 㳿 . , , . , 2, (2-).

2 - . 㳿 N2, , , . 90% , . 2 . , , -, , -, 2. 2- .

2 ( ) 30-50 9,4 10,6 .

2- ( ) . 2 200 2- 9 . 1 . , 2- , , 15-20% ( 40%). 2- . Co2- : (, ), ' ( = 10 ), , ' (. ) ( ),

2- 2 10 , (. 3). () 10 . . . 2- 䳿 , . . . ,

2- , , - . . . ( ) . , , . , . 2, , .

(. , , 1964). 㳿 . , 䳺 , - . , /2 5 . . ' , .

볺 , . 0,01%. . = 0,5145 ( ) . ³ 㳿 , , ', .

䳺 ( ) . ³ 0,1 0,4880 (), 0,5145 (), 0,5682 () 0,6471 ( ).

, (0,4416 ) (0,3250 ) 䳺 . Cd , (. 4). . г Cd Cd . ٳ Cd . Cd . 2,5 140 4,5 .. .., 250 , 0,12 4 0,1 0,004 . 쳺 (. ), , 㳿 쳿.

(. . . . , , 1966). . , , . 㳿 ( ). 2- . . , , 100 .

ճ . , ; , . , . ճ , 㳿 . ' , DF, 2. .

. ., ( 䳺 ). , . Cfi (. . , . . , ). 䳺 -. I+.

, ,
0,3250
0,4416
0,4880
0,5145
0,5682
| - 0,6328
- 1,1523
2,0261
- 3,3912
- 5,6-5,9
2- 9,4-10,6 .
HCN  

 

22.1 㳿 .

 

22.2 - .

22.3 쳺 : 1 - ; 2 - ; 3 - () (); 4 - ; 5 - ; 6 - .

 

r-r r - , . 632,8 , .

- , , - 5:1, ( 300 ). 1000 , . - , 1 % .

- , - 15 0,5 , 1 100 .

䳿

. , 㳿 1S0 2p55s 2 [1/2] - 20.616 20.661 . :

 

He* + Ne + = He + Ne*

 

( (*) , - .) , 0.05 㳿 . 2p55s 2 [1/2] 2p53p 2, [3/2]. - .

ϳ 2p55s 2 [1/2] 2p53p 2 [3/2] 632.816 . 2p53p 2 [3/2] 2p53s 2p6 - ( 2p53s), ( 2p53s).

: 2p55s 2 [1/2] 2p54p 2 [1/2] 3.39 , 2p54s 2 [3/2], , 2p53p 2 [3/2], 1.15 . 543,5 (), 594 () 612 ().

, , , 1,5 , . - , ﳿ, -.

 

˳

1. , ., 1969; .,

2. , . ., ., 1964;

3. ., , . , 1966, . 54, F 10;

4. ., , , 1969, . 97, . 4;

5. ., ., , . ., ., 1970.

Laser

 

In 1953 Basov, Prohorov (Soviet physicists) and independently from them Townes (American physicist) created first molecular generators called lasers which worked in the range of centimeter waves. In 1960 Meiman (USA) created analogical device working in the optical range (Light Amplification by Simulated Emission of Radiation) laser or optical quantum generator.

There are solids, gas, semiconductor and liquid lasers accordingly to the type of medium. Laser consists of: active medium, system of pumping, optical resonator. The scheme of laser is shown in Fig. 13.1.The active medium amplifies light. System of pumping realizes tran

Figure 23.1

 

sition of medium to the state with population inversion. For the selection of direction of laser radiation optical resonator is used. For example, a pair of parallel mirrors facing each other being on the common optical axis between which optical medium exists. One of the mirrors is semitransparent through which numerically amplified flux of photons laser radiation escapes.

Let us consider the work of He-Ne laser (Fig.13.2).

Figure 23.2

 

Population inversion of levels is realized trough electrical discharge: electrons formed in discharge excite atoms of He at collision that transfer to the state 3.

At the collisions of excited He atoms with Ne atoms excitation of them occurs and they pass to higher level situated near respective He level. Passing of Ne atoms from the high level 3 to the lower level 2 causes laser radiation of λ = 0,6328 μ. Laser radiation is characterized by:

1) High time and space coherence.

2) rigid monochromatism ();

3) the high power of radiation;

4) very small angular discrepancy of the beam.

The use of laser is very wide: machining of materials, research of plasma, in the measuring devices, in medicine.

 

˳

1. c . . . .: , 1976.

2. . . . . 4. .: , 1980.

3. . . . . 2. .: , 1982.

4. . ., . . . 3.

5. . ., ҳ . . . 3.

6. , ., 1969; .,

7. , . ., ., 1964;

8. ., ., , . ., ., 1970.

 





:


: 2016-12-06; !; : 304 |


:

:

.
==> ...

1478 - | 1408 -


© 2015-2024 lektsii.org - -

: 0.054 .