Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Ряды распределения и приемы их построения




Средние величины

 

Средней величиной называется обобщающий показатель, характеризующий типичный уровень варьирующего количественного признака на единицу совокупности в определенных условиях места и времени.

Объективность и типичность статистической средней обеспечивается лишь при определенных условиях. Первое условие – средняя должна вычисляться для качественно однородной совокупности. Для получения однородной совокупности необходима группировка данных, поэтому расчет средней должен сочетаться с методом группировок. Второе условие – для исчисления средних должны быть использованы массовые данные. В средней величине, исчисленной на основе данных о большом числе единиц (массовых данных), колебания в величине признака, вызванные случайными причинами, погашаются, и проявляется общее свойство (типичный размер признака) для всей совокупности.

Средняя величина всегда именованная, она имеет ту же размерность, что и признак у отдельных единиц совокупности.

В экономических исследованиях и плановых расчетах применяются две категории средних:

- степенные средние;

- структурные средние.

К категории степенных средних относятся: средняя арифметическая, средняя гармоническая, средняя квадратическая, средняя геометрическая. Величины, для которых исчисляется средняя, обозначаются буквой хi. Средняя обозначается через . Такой способ обозначения указывает на происхождение средней из конкретных величин. Черта вверху символизирует процесс осреднения индивидуальных значений. Частота – повторяемость индивидуальных значений признака – обозначается буквой f.

Формулы средних величин могут быть получены на основе степенной средней, для которой определяющей является управление:

, откуда . (5.1)

 

В дальнейшем при написании формул средних подстрочные значки i, n использоваться не будут, но подразумевается, что суммируются все произведения .

В зависимости от степени k получаются различные виды средних величин, их формулы представлены в таблице 5.1.

 

Как видно из таблицы 5.1, взвешенные средние учитывают, что отдельные варианты значений признака имеют различную численность, поэтому каждый вариант «взвешивают» по своей частоте, т.е. умножают на нее. Частоты f при этом называются статистическими весами или просто весами средней. Однако необходимо учитывать, что статистический вес – понятие более широкое, чем частота. В качестве веса могут применяться какие-либо другие величины (в таблице 5.1 они обозначены буквой w). Например, при расчете средней продолжительности рабочего дня по предприятию единственно правильным будет взвешивание по количеству отработанных человеко-дней. Частоты отдельных вариантов могут быть выражены не только абсолютными величинами, но и относительными – частостями.

 

Вопрос о выборе средней решается в каждом отдельном случае, исходя из задачи исследования, материального содержания изучаемого явления и наличия исходной информации. Он состоит из нескольких этапов:

1) устанавливается определяющий показатель, т.е. обобщающий показатель совокупности, от которого зависит величина средней;

2) определяется математическое выражение для определяющего показателя;

3) производится замена индивидуальных значений средними величинами;

4) решение уравнения средней.

Основополагающее правило при этом заключается в том, что величины, представляющие собой числитель и знаменатель средней, должны иметь определенный логический смысл.

 

Таблица 5.1 - Формулы различных видов степенных средних величин

 

Значение k Наименование средней Формула средней
простая взвешенная
-1 Гармоническая ;
  Геометрическая
  Арифметическая ;
  Квадратическая

 

Структурные средние – мода и медиана – в отличие от степенных средних, которые в значительной степени являются абстрактной характеристикой совокупности, выступают как конкретные величины, совпадающие с вполне определенными вариантами совокупности.

Медианой называется значение признака, которое лежит в середине ранжированного ряда и делит этот ряд на две равные по численности части.

Ранжированный ряд – ряд, расположенный в порядке возрастания или убывания значений признака.

Для определения медианы сначала определяют ее место в ряду, используя формулу 5.2:

, (5.2)

где n – число членов ряда.

 

Если ряд состоит из четного числа членов, то за медиану условно принимают среднюю арифметическую их двух срединных значений.

Модой называется значение признака, которое наиболее часто встречается в совокупности (в статистическом ряду).

 

Ряды распределения и приемы их построения

 

Различия индивидуальных значений признака у единиц совокупности называются вариацией признака. Она возникает в результате того, что индивидуальные значения складываются под совместным влиянием разнообразных условий (факторов), по разному сочетающихся в каждом отдельном случае.

Изучение вариации в пределах однородной группы предполагает использование следующих приемов: построение вариационного ряда (ряда распределения), его графическое изображение, исчисление основных характеристик распределения.

Вариационный ряд – групповая таблица, построенная по количественному признаку, в сказуемом которой показывается число единиц в каждой группе. Форма построения вариационного ряда зависит от характера изменения изучаемого признака, он может быть построен в форме дискретного или интервального ряда.

По характеру вариации значений признака различают:

- признаки с прерывным изменением (дискретные);

- признаки с непрерывным изменением (непрерывные).

Признаки с прерывным изменением могут принимать лишь конечное число определенных значений (например, тарифный разряд рабочих). Признаки с непрерывным изменением могут принимать в определенных границах любые значения (например, пробег автомобиля).

Для признака, имеющего прерывное изменение и принимающего небольшое количество значений, применяется построение дискретного ряда. В первой графе ряда указываются конкретные значения каждого индивидуального значения признака, во второй графе – численность единиц с определенным значением признака.

Для признака, имеющего непрерывное изменение, строится интервальный вариационный ряд, состоящий, так же как и дискретный ряд, из двух граф (варианты и частоты). При его построении в первой графе отдельные значения признака указываются в интервалах «от - до», во второй графе – число единиц, входящих в интервал. Интервалы образуются, как правило, равные и закрытые.

Вариационный ряд, состоящий из двух граф (варианты и частоты), иногда дополняются другими графами, необходимыми для вычисления отдельных статистических показателей или для более отчетливого выражения характера вариации изучаемого признака. Достаточно часто в ряд вводится графа, в которой подсчитываются накопленные частоты (S). Накопленные частоты показывают, сколько единиц совокупности имеют значения признака не больше, чем данное значение, и исчисляются путем последовательного прибавления к частоте первого интервала частот последующих интервалов.

Частоты ряда (f) могут быть заменены частостями (w), которые представляют собой частоты, выраженные в относительных числах (долях или процентах) и рассчитанные путем деления частоты каждого интервала на их общую сумму, т.е.

; и т.д. (5.3)

 

Если вариационный ряд дан с неравными интервалами, то для правильного представления о характере распределения необходимо произвести расчет абсолютной или относительной плотности распределения.

Абсолютная плотность распределения (p) представляет собой величину частоты, приходящейся на единицу размера интервала отдельной группы ряда: p = f / i. (5.4)

Относительная плотность распределения (p/) – частное от деления частости (w) отдельной группы на размер ее интервала: p/ = w / i. (5.5)

Следующим этапом изучения вариационного ряда является его графическое изображение.

Для наглядного представления вариационных рядов используют графические методы: полигоны распределения частот, гистограммы частот, кумулятивные кривые и т.п. Линейчатые и круговые диаграммы строятся для отображения структуры совокупности.

Полигон — ломаная кривая, строящаяся на основе прямоугольной системы координат, когда по оси X откладываются значения признака, а по оси Y — частоты.

Гладкая кривая, соединяющая точки, — эмпирическая плотность распределения.

Кумулята — ломаная кривая, строящаяся на основе прямоугольной системы координат, когда по оси X откладываются значения признака, а по оси Y — накопленные частоты.

Для дискретных рядов на оси откладываются сами значения признака, а для интервальных — середины интервалов.

Дискретный вариационный ряд изображается в виде полигона распределения частот. Для изображения интервального ряда применяются полигоны распределения частот и гистограмма частот. В ряде случаев для изображения вариационных рядов используются кумулятивная кривая (кумулята) и огива.

Для анализа вариационных рядов используются три группы показателей:

- показатели центра распределения;

- показатели степени вариации;

- показатели формы распределения.

 





Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 757 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Вы никогда не пересечете океан, если не наберетесь мужества потерять берег из виду. © Христофор Колумб
==> читать все изречения...

2307 - | 2123 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.