Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями.
Закон распределения дискретной случайной величины обычно задается рядом распределения, который представляется в виде таблицы:
… | ||||
… |
где в первой строке перечислены все возможные значения случайной величины, а во второй – соответствующие им вероятности , удовлетворяющие соотношению .
Закон распределения может быть задан графически в виде многоугольника распределения вероятностей, т.е. в виде ломаной, соединяющей точки с координатами для .
Математическим ожиданием или средним значением дискретнойслучайной величины называется сумма произведений всех ее возможных значений на соответствующие им вероятности:
. (7)
Дисперсией случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания, т.е.
. (8)
Для вычисления дисперсии на практике бывает удобнее использовать другую формулу, которую можно получить из формулы (8) с помощью простых преобразований:
. (9)
Средним квадратическим отклонением или стандартным отклонением случайной величины называется корень квадратный из ее дисперсии:
. (10)
Непрерывная случайная величина и ее числовые характеристики
Закон распределения непрерывной случайной величины удобно задавать с помощью функции плотности вероятности . Вероятность того, что значение, принятое случайной величиной , попадет в интервал , определяется равенством:
.
Математическим ожиданием или средним значением непрерывной случайной величины с плотностью распределения вероятности называется число:
,
если этот интеграл сходится абсолютно. В противном случае математическое ожидание случайной величины не существует.
Дисперсия непрерывной случайной величины определяется также, как и для дискретной. Для непосредственного вычисления дисперсии используют формулы:
или .
Нормальное распределение
Непрерывная случайная величина имеет нормальное или гауссовское распределение с параметрами и , где и (пишут ), если функция плотности случайной величины имеет вид:
,
для любого .
При и , т.е. , нормальный закон распределения называется стандартным или нормированным.
Если случайная величина имеет нормальное распределение с параметрами и , то
и .
Найти вероятность попадания случайной величины , распределенной по нормальному закону с параметрами и , в интервал можно по формуле:
, (11)
где – функции Лапласа, значения которой определяются по таблице. При использовании таблицы необходимо учитывать, что функция является нечетной и при значения считаются равными 0,5.
Математическая статистика