Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Вычисление объема тела вращения




Пусть криволинейная трапеция, ограниченная прямыми x = a, x= b,
y = 0 и непрерывной кривой y = f (x), где для , вращается вокруг оси ОX. Объем полученного при этом тела вращения (рис. 4) вычисляется по формуле:

. (14)

Если плоская фигура ограничена линиями x = a, x= b, y 1 = f 1(x) и
y 2 = f 2(x), где для , то объем полученного при ее вращении вокруг ОX тела (рис. 5) можно вычислить по формуле:

. (15)

 
 

11. Вычисление длины дуги плоской кривой

Пусть плоская кривая АВ задана уравнением y = f (x), где . Если функция f′ (x) и ее производная f′ (x) непрерывны на промежутке [ a; b ], то длина кривой АВ вычисляется по формуле:

. (16)

Примерный вариант и образец выполнения
контрольной работы 5

Задача 1. Найти неопределенные интегралы:

, , в) , .

В примерах правильность полученных результатов проверить дифференцированием.

Задача 2. Вычислить несобственные интегралы или доказать их расходимость:

а) , б) .

Задача 3. Вычислить с помощью определенного интеграла площадь плоской фигуры:

а) ограниченной в ДСК линиями l 1: и l 2: ;

б ) ограниченной в ПСК линией l: .

Сделать чертежи.

Задача 4. Вычислить с помощью определенного интеграла объем тела, полученного вращением вокруг оси OX фигуры, ограниченной линиями

l 1: y = 2 x 2 и l 2: y = 6 x. Сделать чертеж.

Задача 5. Вычислить с помощью определенного интеграла длину дуги кривой, заданной в ДСК уравнением , где .

Решение задачи 1

а) Так как , то используя формулу (3), получим:

.

Проверим результат дифференцированием:

следовательно, выполнено условие (1).

Ответ: = .

б) Интеграл относится к типу интегралов, берущихся по частям; это интеграл так называемого второго типа. Используя формулу (4), получим:

.

Проверим результат дифференцированием:

.

Ответ: = .

в) Подинтегральная функция является правильной рациональной дробью, поэтому ее можно представить в виде суммы простейших дробей:

, отсюда

или .

Неопределенные коэффициенты А, В, С найдем, приравнивая коэффициенты при одинаковых степенях х в левой и правой частях тождества:

Коэффициенты А, В, С можно найти другим способом подставляя
в тождество "удобные" значения х (метод частных значений):

Из первого уравнения получим: А = 11/12. Почленно вычитая два последних равенства, получим: , и из последнего уравнения

.

Таким образом,

Переходим к интегрированию:

.

Здесь использовано:

,

.

Проверим результат дифференцированием:

.

Ответ: = .

г) Применим универсальную тригонометрическую подстановку:

.

Возвращаясь к переменной х, получаем:

Ответ: = .

Решение задачи 2

а) Данный интеграл является несобственным интегралом первого рода, поэтому

следовательно, интеграл сходится и равен .

Здесь использовано:

Ответ: интеграл сходится и равен .

б) Данный интеграл является несобственным интегралом второго рода, так как х = 13– точка бесконечного разрыва подинтегральной функции. Поэтому

,

следовательно, интеграл сходится и равен .

Ответ: интеграл сходится и равен .

Решение задачи 3

а) Найдем точки пересечения кривых, для чего составим и решим систему . Приравнивая правые части, получаем уравнение , решив которое, найдем абсциссы точек пересечения: x = 1, x = 3.

Построим чертеж (рис. 6). На рисунке видно, что на промежутке [ 1; 3].

Используя формулу (12), вычислим площадь фигуры, ограниченной заданными линиями:

Ответ: единиц площади.

б) Для построения кривой в ПСК составим таблицу значений функции на промежутке .

  π/4 2π/4 3π/4 π 5π/4 6π/4 7π/4
  12,7   11,3   11,3   12,7  

 

Построим чертеж в ПСК (рис. 7). Так как фигура ограничена кривой, заданной в полярной системе координат, то площадь фигуры, ограниченной заданной линией,вычислим по формуле (13):

.

Для получаем:

.

Ответ: единицы площади.

Решение задачи 4

Для построения фигуры Ф, ограниченной кривыми l 1 и l 2, нужно найти точки их пересечения, т. е. решить систему: . Приравнивая правые части равенств, получаем уравнение 2 x 2 – 6 x = 0, решив которое, найдем абсциссы точек пересечения кривых: x = 0, x = 3.

Объем тела вращения, полученного вращением фигуры Ф вокруг оси OX (рис. 8), можно найти как разность объемов двух тел по формуле (15):

.

Ответ: единиц объема.

Решение задачи 5

Кривая задана уравнением где , поэтому ее длина вычисляется по формуле (16): .

Для получаем: , тогдадлина дуги кривой

Ответ: единиц длины.

Справочный материал по теме
"Дифференциальные уравнения"





Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 869 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2376 - | 2185 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.