Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Критерий равенства дисперсий ряда генеральных




Совокупностей

 

 

Нулевая гипотеза в этом случае заключается в том, что все m генеральных совокупностей, из которых взяты выборки, имеют равные дисперсии, т.е. σ21 = σ22 = … = σ2m = σ2.

Критерий Хартлея. Применяется при одинаковых объёмах выборки n 1 = n 2 = … n m = n. Выдвигается нулевая гипотеза о равенстве (однородности) ряда дисперсий σ21 = σ22 = … = σ2m = σ2. Критерий предусматривает вычисление статистики

F max = F max α. (3.11)

При выполнении неравенства нулевую гипотезу не отвергают. В противном случае – отвергают и принимают альтернативную гипотезу.

Пример 3.5. Испытано на растяжение 5 серий по 20 образцов. Значения выборочных дисперсий составляют: s 21 = 154; s 22 = 208; s 23 = 186; s 24 = 197; s 24 = 153.

Требуется проверить гипотезу о равенстве генеральных дисперсий предела прочности материала при альтернативной гипотезе σ21 ≠ σ22.

По формуле (3.11)

F max = = 1,36

По таблице 3.4 для α = 0,05; m = 5 и k = 20 – 1 = 19

F max 0.05 = 3,71

Условие (3.11) выполняется

Заключение: дисперсии равны друг другу.

Таблица 3.4 – Критические значения критерия Хартлея F max α

k = n –1 m
                     
  39,0 87,5         40,3        
  15,4 47,5 27,8 39,2 50,7 62,0 72,9 83,5 93,9      
  9,60 23,2 15,5 37,0 20,6 25,2 29,5 33,6 37,5 41,1 44,6 48,0 51,4
  7,15 14,9 10,8 13,7 16,3 18,7 20,8 22,9 24,7 26,5 28,2 29,9
  5,82 11,1 8,38 15,5 10,4 19,1 21,1 13,7 15,0 16,3 17,5 18,6 19,7 20,7
  4,99 8,89 6,94 12,1 8,44 14,5 9,70 16,5 10,8 18,4 11,8 12,7 13,5 14,3 15,1 15,8
  4,43 7,50 6,00 9,9 7,18 11,7 8,12 13,2 9,03 14,5 9,78 15,8 10,5 16,9 11,1 17,9 11,7 18,9 12,2 19,8 12,7
  4,03 6,54 5,34 8,5 6,31 9,9 7,11 11,1 7,80 12,1 8,41 3,1 8,95 13,9 9,45 14,7 9,91 15,3 10,3 16,0 10,7 16,6
  3,72 5,85 4,85 7,4 5,67 8,6 6,34 9,6 6,92 10,4 7,42 11,1 7,87 11,8 8,28 12,4 8,66 12,9 9,01 13,4 9,34 13,9
  3,28 4,91 4,16 6,1 4,79 6,9 5,30 7,6 5,72 8,2 6,09 8,7 6,42 9,1 6,72 9,5 7,00 9,9 7,25 10,2 7,48 10,6
  2,86 4,07 3,54 4,9 4,01 5,5 4,37 6,0 4,68 6,4 4,95 6,7 5,19 7,1 5,40 7,3 5,59 7,5 5,77 7,8 5,93 8,0
  2,46 3,32 2,95 3,8 3,29 4,3 3,54 4,6 3,76 4,9 3,94 5,1 4,10 5,3 4,24 5,5 4,37 5,6 4,49 5,8 4,59 5,9
  2,07 2,63 2,40 3,0 2,61 3,3 2,78 3,4 2,91 3,6 3,02 3,7 3,12 3,8 3,21 3,9 3,29 4,0 3,36 4,1 3,39 4,2
  1,67 1,96 1,85 2,2 1,96 2,3 2,04 2,4 2,11 2,4 2,17 2,5 2,22 2,5 2,26 2,6 2,30 2,6 2,33 2,7 2,36 2,7
Примечание. Верхняя строка в каждой графе для α = 0,05; нижняя – для α = 0,01

 

Критерий Кочрена. Используется также при равных объёмах отдельных выборок и является предпочтительным по сравнению с критерием Хартлея в случаях, когда одна из выборочных дисперсий значительно больше остальных, а также при m > 12.

Находят статистику

G max = G α. (3.12)

При выполнении неравенства нулевую гипотезу не отвергают. В противном случае – отвергают и принимают альтернативную гипотезу.

Пример 3.6. Проверить нулевую гипотезу Н 0: σ21 = σ22 = … = σ2 по условию примера 3.5

По формуле (3.12)

G max = = 0,232

По таблице 3.5 для α = 0,05; m = 5 и k = 20 – 1 = 19

G α = G 0,05 = 0,356

Условие (3.12) выполняется

Заключение: гипотеза принимается.

Таблица 3.5 – Критические значения критерия Кочрена G α

m k = n – 1
                         
  0,9958 0,9990 0,9750 0,9950 0,9392 0,9794 0,9057 0,9586 0,8772 0,9373 0,8534 0,9172 0,5332 0,8988 0,8159 0,8823 0,8010 0,8674 0,7880 0,8539 0,7341 0,7949 0,6602 0,7067 0,5813 0,6062 0,5000 0,5000
  0,9669 0,9933 0,8709 0,9423 0,7977 0,8831 0,7457 0,8335 0,7071 0,7933 0,6771 0,7606 0,6530 0,7335 0,6333 0,7107 0,6167 0,6912 0,6025 0,6743 0,5466 0,6059 0,4748 0,5153 0,4031 0,4230 0,3333 0,3333
  0,9065 0,9676 0,7679 0,8643 0,6841 0,7814 0,6287 0,7212 0,5895 0,6761 0,5598 0,6410 0,5365 0,6129 0,5175 0,5897 0,5017 0,5702 0,4884 0,5536 0,4366 0,4884 0,3720 0,4057 0,3093 0,3251 0,2500 0,2500
  0,8412 0,9279 0,6838 0,7885 0,5981 0,6957 0,5441 0,6329 0,5065 0,5875 0,4783 0,5531 0,4564 0,5259 0,4387 0,5037 0,4241 0,4854 0,4118 0,4697 0,3645 0,4094 0,3066 0,3351 0,2513 0,2644 0,2000 0,2000
  0,7808 0,8828 0,6161 0,7218 0,5321 0,6258 0,4803 0,5635 0,4447 0,5195 0,4184 0,4866 0,3980 0,4608 0,3817 0,4401 0,3682 0,4229 0,3568 0,4084 0,3135 0,3529 0,2612 0,2858 0,2119 0,2229 0,1667 0,1667
  0,7271 0,8376 0,5612 0,6644 0,4800 0,5685 0,4307 0,5080 0,3974 0,4695 0,3726 0,4347 0,3535 0,4105 0,3384 0,3911 0,3259 0,3751 0,3154 0,3616 0,2756 0,3105 0,2278 0,2494 0,1833 0,1929 0,1429 0,1429
  0,6798 0,7945 0,5157 0,6152 0,4377 0,5209 0,3910 0,4627 0,3595 0,4226 0,3362 0,3932 0,3185 0,3704 0,3043 0,3522 0,2926 0,3373 0,2829 0,3248 0,2462 0,2779 0,2022 0,2214 0,1616 0,1700 0,1250 0,1250
  0,6385 0,7544 0,4775 0,5727 0,4027 0,4810 0,3584 0,4251 0,3286 0,3870 0,3067 0,3592 0,2901 0,3378 0,2768 0,3207 0,2659 0,3067 0,2568 0,2950 0,2226 0,2514 0,1820 0,1992 0,1446 0,1521 0,1111 0,1111
  0,6020 0,7175 0,4450 0,5358 0,3733 0,4469 0,3311 0,3934 0,3029 0,3572 0,2823 0,3308 0,2666 0,3106 0,2541 0,2945 0,2439 0,2813 0,2353 0,2704 0,2032 0,2297 0,1655 0,1811 0,1308 0,1376 0,1000 0,1000
  0,5410 0,6528 0,3924 0,4751 0,3264 0,3919 0,2880 0,3328 0,2624 0,3099 0,2439 0,2861 0,2299 0,2680 0,2187 0,2535 0,2098 0,2419 0,2020 0,2320 0,1737 0,1961 0,1403 0,1535 0,1100 0,1157 0,0833 0,0833
  0,4709 0,5747 0,3346 0,4069 0,2758 0,3317 0,2419 0,2882 0,2195 0,2593 0,2034 0,2386 0,1911 0,2228 0,1815 0,2104 0,1736 0,2002 0,1671 0,1918 0,1429 0,1612 0,1144 0,1251 0,0889 0,0934 0,0667 0,0667
  0,3894 0,4799 0,2705 0,3297 0,2205 0,2654 0,1921 0,2288 0,1735 0,2048 0,1602 0,1877 0,1501 0,1748 0,1422 0,1646 0,1357 0,1567 0,1303 0,1501 0,1108 0,1248 0,0879 0,0960 0,0675 0,0709 0,0500 0,0500
  0,3434 0,4247 0,2354 0,2871 0,1907 0,2295 0,1656 0,1970 0,1493 0,1759 0,1374 0,1608 0,1286 0,1495 0,1216 0,1406 0,1160 0,1338 0,1113 0,1283 0,0942 0,1060 0,0743 0,0810 0,0567 0,0595 0,0417 0,0417
  0,2929 0,3632 0,1980 0,2412 0,1593 0,1913 0,1377 0,1635 0,1237 0,1454 0,1137 0,1327 0,1061 0,1232 0,1002 0,1157 0,0958 0,1100 0,0921 0,1054 0,0771 0,0867 0,0604 0,0658 0,0457 0,0480 0,0333 0,0333
  0,2370 0,2940 0,1576 0,1915 0,1259 0,1508 0,1082 0,1281 0,0968 0,1135 0,0887 0,1033 0,0827 0,0957 0,0780 0,0898 0,0745 0,0853 0,0713 0,0816 0,0595 0,0668 0,0462 0,0503 0,0347 0,0363 0,0250 0,0250
  0,1737 0,2151 0,1131 0,1371 0,0895 0,1069 0,0765 0,0902 0,0682 0,0796 0,0623 0,0722 0,0583 0,0668 0,0552 0,0625 0,0520 0,0594 0,0497 0,0567 0,0411 0,0461 0,0316 0,0344 0,0234 0,0245 0,0167 0,0167
  0,0998 0,1225 0,0632 0,0759 0,0495 0,0585 0,0419 0,0489 0,0371 0,0429 0,0337 0,0387 0,0312 0,0357 0,0292 0,0334 0,0279 0,0316 0,0266 0,0302 0,0218 0,0242 0,0165 0,0178 0,0120 0,0125 0,0083 0,0083
Примечание. Верхняя строка в каждой графе для α = 0,05; нижняя – для α = 0,01

Критерий Бартлета. При неодинаковом числе образцов в отдельных партиях n i ≥ 5 однородность дисперсий может быть проверена с помощью критерия Бартлета.

χ2 = , (3.13)

где

с = 1 + , (3.14)

s 2 = , (3.15)

Если выполняется условие

χ2 ≤ χ2α (3.16)

для выбранного уровня значимости α и числа степеней свободы k = m – 1, то нулевую гипотезу о равенстве генеральных дисперсий совокупностей, из которых взяты выборки, не отвергают. В противном случае – отвергают и принимают альтернативную гипотезу.

В случае подтверждения нулевой гипотезы, на основании выражения (3.15) производят новую оценку генеральной дисперсии σ2.

 

 





Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 345 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент всегда отчаянный романтик! Хоть может сдать на двойку романтизм. © Эдуард А. Асадов
==> читать все изречения...

2513 - | 2249 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.