Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Выпуклость дифференцируемой функции




РАЗДЕЛ 6. ВЫПУКЛОСТЬ

· Излагается важное в дальнейшем понятие выпуклости

· Рассматриваются вопросы выпуклости функций одной и нескольких переменных

 

ВЫПУКЛОСТЬ НЕПРЕРЫВНОЙ ФУНКЦИИ

Определение. Непрерывная на интервале (a,b) функция f, называется выпуклой вниз (соответственно, выпуклой вверх), если для любых точек , , и любого числа справедливо неравенство

(1)

(соответственно, неравенство

. (1’)

В правой части неравенства (1) стоит значение функции f в произвольной точке , расположенной на отрезке , содержащемся в интервале (a,b). Левая часть в (1) выражает собой ординату точки координатной плоскости, абсцисса которой равна , , и которая лежит на прямолинейном отрезке (хорде), соединяющем точки и графика функции f.

Итак, если непрерывная функция f выпукла вниз на интервале (a,b), то для любых его точек , , график функции f на отрезке расположен ниже хорды, стягивающей концевые точки графика на этом отрезке (см. рис.1, а)).

 

Рис.1

 

Аналогично, заключаем, что если непрерывная функция f выпукла вверхна интервале (a,b), то для любых его точек , , график функции f на отрезке расположен выше хорды, стягивающей концевые точки графика на этом отрезке (см. рис.1, b)).

Обозначим . Тогда , откуда .

Неравенство (1) принимает вид

 

, (2)

или, после умножения обеих частей его на множитель ,

. (3)

Поскольку , то после элементарных преобразований неравенство (4) переходит в неравенство

, (4)

справедливое для любого .

Итак, условие (1) равносильно неравенству (4).

В случае выпуклости вверх знаки неравенств (2)-(4) следует сменить на противоположные.

 

ВЫПУКЛОСТЬ ДИФФЕРЕНЦИРУЕМОЙ ФУНКЦИИ

 

Теорема. Для того, чтобы дифференцируемая на функция f была выпукла вниз (вверх) на этом интервале, необходимо и достаточно, чтобы её производная функция не убывала (не возрастала) на этом интервале.

◄Доказательство проведём для выпуклой вниз функции. Докажем сначала, что её производная не убывает.

Пусть , . Переходя в неравенстве (4) к пределу при , получим:

. (5)

Переходя в неравенстве (4) к пределу при , получим:

. (6)

Из неравенств (5) и (6) следуют неравенства , что и требовалось доказать.

Обратно, пусть производная функция не убывает на . Пусть , . Следует доказать, что выполняется неравенство (4). Для этого заметим, что дифференцируема на , следовательно, непрерывна на и непрерывна на . Тогда по теореме Лагранжа, применённой к отрезку где , находим:

. (7)

Аналогично, по теореме Лагранжа, применённой к отрезку

. . (8)

Так как не убывает на , выполняется неравенство , из которого следует, ввиду (7) и (8), неравенство (4), равносильное выпуклости вниз рассматриваемой функции.►

Теорема. Функция , дифференцируемая на интервале ,тогда и только тогда выпукла вниз на этом интервале, когда для любой точки и любой точки справедливо неравенство

.

Противоположное неравенство

,
справедливо для всех, тогда и только тогда, когда функция выпукла вверх на .

 

◄ Доказательство проведём для случая выпуклой вниз функции. Пусть сначала дифференцируемая функция выпукла вниз на . Тогда, какустановлено в теореме 30.1, справедливы неравенства (5) и (6).Неравенство (5) можно преобразовать к равносильному виду

. (9)

Преобразование состоит в умножении обеих частей неравенства (5) на положительный знаменатель и замене обозначений: точку заменяем на , а точку на точку , считая, что . Точно также, при , преобразуем неравенство (6), заменяя точку на точку , а точку на . После этого преобразования снова получим неравенство (9).

Таким образом, если дифференцируемая функция выпукла вниз на интервале , то для всех выполняется неравенство (9). Для выпуклой вверх функции имеем, соответственно,

.

Обратно, пусть для всех выполняется неравенство (9).

Рассмотрим произвольные точки , . Применяя неравенство (9) к точке и считая , получим неравенство , а применяя его к точке и считая , получаем неравенство , на основании которых, с учётом условия , имеем

.

Следовательно, производная функции не убывает на . По теореме 30.1 функция выпукла вниз на .

 

Геометрически свойство выпуклости вниз дифференцируемой функции f на означает, что её график в пределах этого интервала располагается выше касательной, проведенной в любой точке графика; для выпуклой вверх дифференцируемой функции картина противоположная (см. рис. 2).


Рис.2

 

Замечание 1. Если обозначить

,
то свойство выпуклости вниз(вверх) дифференцируемой функции на равносильно тому, что для любой точки неравенство () справедливо для всех . Отметим, что

 





Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 1650 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2279 - | 2077 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.