Основой самоподдержания жизни на Земле являются биогеохимические круговороты. Все химические элементы, используемые в процессах жизнедеятельности организмов, совершают постоянные перемещения, переходя из живых тел в соединения неживой природы и обратно. Возможность многократного использования одних и тех же атомов делает жизнь на Земле практически вечной при условии постоянного притока нужного количества энергии.
Типы круговоротов веществ. Биосфера Земли характеризуется определенным образом сложившимися круговоротом веществ и потоком энергии. Круговорот веществ – многократное участие веществ в процессах, протекающих в атмосфере, гидросфере и литосфере, в том числе в тех слоях, которые входят в состав биосферы Земли. Круговорот веществ осуществляется при непрерывном поступлении (потоке) внешней энергии Солнца и внутренней энергии Земли.
В зависимости от движущей силы, с определенной долей условности, внутри круговорота веществ можно выделить геологический, биологический и антропогенный круговороты. До возникновения человека на Земле осуществлялись только первые два.
Геологический круговорот (большой круговорот веществ в природе) – круговорот веществ, движущей силой которого являются экзогенные и эндогенные геологические процессы.
Эндогенные процессы (процессы внутренней динамики) происходят под влиянием внутренней энергии Земли. Это энергия, выделяющаяся в результате радиоактивного распада, химических реакций образования минералов, кристаллизации горных пород и т. д. К эндогенным процессам относятся: тектонические движения, землетрясения, магматизм, метаморфизм. Экзогенные процессы (процессы внешней динамики) протекают под влиянием внешней энергии Солнца. Экзогенные процессы включают выветривание горных пород и минералов, удаление продуктов разрушения с одних участков земной коры и перенос их на новые участки, отложение и накопление продуктов разрушения с образованием осадочных пород. К экзогенным процессам относятся геологическая деятельность атмосферы, гидросферы (рек, временных водотоков, подземных вод, морей и океанов, озер и болот, льда), а также живых организмов и человека.
Крупнейшие формы рельефа (материки и океанические впадины) и крупные формы (горы и равнины) образовались за счет эндогенных процессов, а средние и мелкие формы рельефа (речные долины, холмы, овраги, барханы и др.), наложенные на более крупные формы, – за счет экзогенных процессов. Таким образом, эндогенные и экзогенные процессы противоположны по своему действию. Первые ведут к образованию крупных форм рельефа, вторые – к их сглаживанию.
Магматические горные породы в результате выветривания преобразуются в осадочные. В подвижных зонах земной коры они погружаются вглубь Земли. Там под влиянием высоких температур и давлений они переплавляются и образуют магму, которая, поднимаясь на поверхность и застывая, образует магматические породы.
Таким образом, геологический круговорот веществ протекает без участия живых организмов и осуществляет перераспределение вещества между биосферой и более глубокими слоями Земли.
Биологический (биогеохимический) круговорот (малый круговорот веществ в биосфере) – круговорот веществ, движущей силой которого является деятельность живых организмов. В отличие от большого геологического малый биогеохимический круговорот веществ совершается в пределах биосферы. Главным источником энергии круговорота является солнечная радиация, которая порождает фотосинтез. В экосистеме органические вещества синтезируются автотрофами из неорганических веществ. Затем они потребляются гетеротрофами. В результате выделения в процессе жизнедеятельности или после гибели организмов (как автотрофов, так и гетеротрофов) органические вещества подвергаются минерализации, то есть превращению в неорганические вещества. Эти неорганические вещества могут быть вновь использованы для синтеза автотрофами органических веществ.
В биогеохимических круговоротах следует различать две части:
1) резервный фонд – это часть вещества, не связанная с живыми организмами;
2) обменный фонд – значительно меньшая часть вещества, которая связана прямым обменом между организмами и их непосредственным окружением. В зависимости от расположения резервного фонда биогеохимические круговороты можно разделить на два типа:
1) Круговороты газового типа с резервным фондом веществ в атмосфере и гидросфере (круговороты углерода, кислорода, азота).
2) Круговороты осадочного типа с резервным фондом в земной коре (круговороты фосфора, кальция, железа и др.).
Круговороты газового типа более совершенны, так как обладают большим обменным фондом, а значит, способны к быстрой саморегуляции. Круговороты осадочного типа менее совершенны, они более инертны, так как основная масса вещества содержится в резервном фонде земной коры в «недоступном» живым организмам виде. Такие круговороты легко нарушаются от различного рода воздействий, и часть обмениваемого материала выходит из круговорота. Возвратиться опять в круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом. Однако извлечь нужные живым организмам вещества из земной коры гораздо сложнее, чем из атмосферы.
Интенсивность биологического круговорота в первую очередь определяется температурой окружающей среды и количеством воды. Так, например, биологический круговорот интенсивнее протекает во влажных тропических лесах, чем в тундре.
С появлением человека возник антропогенный круговорот, или обмен, веществ. Антропогенный круговорот (обмен) – круговорот (обмен) веществ, движущей силой которого является деятельность человека. В нем можно выделить две составляющие: биологическую, связанную с функционированием человека как живого организма, и техническую, связанную с хозяйственной деятельностью людей (техногенный круговорот).
Геологический и биологический круговороты в значительной степени замкнуты, чего нельзя сказать об антропогенном круговороте. Поэтому часто говорят не об антропогенном круговороте, а об антропогенном обмене веществ. Незамкнутость антропогенного круговорота веществ приводит к истощению природных ресурсов и загрязнению природной среды – основным причинам всех экологических проблем человечества.
Круговороты основных биогенных веществ и элементов. Рассмотрим круговороты наиболее значимых для живых организмов веществ и элементов. Круговорот воды относится к большому геологическому, а круговороты биогенных элементов (углерода, кислорода, азота, фосфора, серы и других биогенных элементов) – к малому биогеохимическому.
Круговорот воды между сушей и океаном через атмосферу относится к большому геологическому круговороту. Вода испаряется с поверхности Мирового океана и либо переносится на сушу, где выпадает в виде осадков, которые вновь возвращаются в океан в виде поверхностного и подземного стока, либо выпадает в виде осадков на поверхность океана. В круговороте воды на Земле ежегодно участвует более 500 тыс. км3 воды. Круговорот воды в целом играет основную роль в формировании природных условий на нашей планете. С учетом транспирации воды растениями и поглощения ее в биогеохимическом цикле весь запас воды на Земле распадается и восстанавливается за 2 млн. лет.
Круговорот углерода. Продуценты улавливают углекислый газ из атмосферы и переводят его в органические вещества, консументы поглощают углерод в виде органических веществ с телами продуцентов и консументов низших порядков, редуценты минерализуют органические вещества и возвращают углерод в атмосферу в виде углекислого газа. В Мировом океане круговорот углерода усложнен тем, что часть углерода, содержащегося в мертвых организмах, опускается на дно и накапливается в осадочных породах. Эта часть углерода выключается из биологического круговорота и поступает в геологический круговорот веществ.
Главным резервуаром биологически связанного углерода являются леса, они содержат до 500 млрд. т этого элемента,чтосоставляет 2/3 его запаса в атмосфере. Вмешательство человека в круговорот углерода (сжигание угля, нефти, газа, дегумификация) приводит к возрастанию содержания СО2 в атмосфере и развитию парникового эффекта.
Скорость круговорота СО2, то есть время, за которое весь углекислый газ атмосферы проходит через живое вещество, составляет около 300 лет.
Круговорот кислорода. Главным образом круговорот кислорода происходит между атмосферой и живыми организмами. В основном свободный кислород (0^) поступает в атмосферу в результате фотосинтеза зеленых растений, а потребляется в процессе дыхания животными, растениями и микроорганизмами и при минерализации органических остатков. Незначительное количество кислорода образуется из воды и озона под воздействием ультрафиолетовой радиации. Большое количество кислорода расходуется на окислительные процессы в земной коре, при извержении вулканов и т.д. Основная доля кислорода продуцируется растениями суши – почти 3/4, остальная часть – фотосинтезирующими организмами Мирового океана. Скорость круговорота – около 2 тыс. лет.
Установлено, что на промышленные и бытовые нужды ежегодно расходуется 23% кислорода, который образуется в процессе фотосинтеза, и эта цифра постоянно возрастает.
Круговорот азота. Запас азота (N2) в атмосфере огромен (78% от ее объема). Однако растения поглощать свободный азот не могут, а только в связанной форме, в основном в виде NН4+ или NО3–. Свободный азот из атмосферы связывают азотфиксирующие бактерии и переводят его в доступные растениям формы. В растениях азот закрепляется в органическом веществе (в белках, нуклеиновых кислотах и пр.) и передается по цепям питания. После отмирания живых организмов редуценты минерализуют органические вещества и превращают их в аммонийные соединения, нитраты, нитриты, а также в свободный азот, который возвращается в атмосферу.
Нитраты и нитриты хорошо растворимы в воде и могут мигрировать в подземные воды и растения и передаваться по пищевым цепям. Если их количество излишне велико, что часто наблюдается при неправильном применении азотных удобрений, то происходит загрязнение вод и продуктов питания, и вызывает заболевания человека.
Круговорот фосфора. Основная масса фосфора содержится в горных породах, образовавшихся в прошлые геологические эпохи. В биогеохимический круговорот фосфор включается в результате процессов выветривания горных пород. В наземных экосистемах растения извлекают фосфор из почвы (в основном в форме РО43–) и включают его в состав органических соединений (белков, нуклеиновых кислот, фосфолипидов и др.) или оставляют в неорганической форме. Далее фосфор передается по цепям питания. После отмирания живых организмов и с их выделениями фосфор возвращается в почву.
При неправильном применении фосфорных удобрений, водной и ветровой эрозии почв большие количества фосфора удаляются из почвы. С одной стороны, это приводит к перерасходу фосфорных удобрений и истощению запасов фосфорсодержащих руд (фосфоритов, апатитов и др.). С другой стороны, поступление из почвы в водоемы больших количеств таких биогенных элементов, как фосфор, азот, сера и др., вызывает бурное развитие цианобактерий и других водных растений («цветение» воды) и эвтрофикацию водоемов. Но большая часть фосфора уносится в море.
В водных экосистемах фосфор усваивается фитопланктоном и передается по трофической цепи вплоть до морских птиц. Их экскременты либо сразу попадают назад в море, либо сначала накапливаются на берегу, а затем все равно смываются в море. Из отмирающих морских животных, особенно рыб, фосфор снова попадает в море и в круговорот, но часть скелетов рыб достигает больших глубин, и заключенный в них фосфор снова попадает в осадочные породы, то есть выключается из биогеохимического круговорота.
Круговорот серы. Основной резервный фонд серы находится в отложениях и почве, но в отличие от фосфора имеется резервный фонд и в атмосфере. Главная роль в вовлечении серы в биогеохимический круговорот принадлежит микроорганизмам. Одни из них восстановители, другие – окислители.
В горных породах сера встречается в виде сульфидов (FeS2 и др.), в растворах – в форме иона (SO42–), в газообразной фазе в виде сероводорода (Н2S) или сернистого газа (SО2). В некоторых организмах сера накапливается в чистом виде и при их отмирании на дне морей образуются залежи самородной серы.
По содержанию в морской среде Сульфат-ион занимает второеместо после хлора и является основной доступной формой серы, которая потребляется автотрофами и включается в состав белков.
В наземных экосистемах сера поступает в растения из почвы в основном в виде сульфатов. В живых организмах сера содержится в белках, в виде ионов и т.д. После гибели живых организмов часть серы восстанавливается в почве микроорганизмами до Н2S, другая часть окисляется до сульфатов и вновь включается в круговорот. Образовавшийся сероводород улетучивается в атмосферу, там окисляется и возвращается в почву с осадками.
Сжигание человеком ископаемого топлива (особенно угля), а также выбросы химической промышленности, приводят к накоплению в атмосфере сернистого газа (SO2), который реагируя с парами воды, выпадает на землю в виде кислотных дождей.
Биогеохимические циклы не столь масштабны как геологические и в значительно степени подвержены влиянию человека. Хозяйственная деятельность нарушает их замкнутость, они становятся ацикличными.
Развитие биосферы
Возраст Земли составляет около 4,6–4,7 млрд. лет. Состав древней атмосферы считают близким к составу газов, выделяющихся из современных вулканов. Химический анализ газовых пузырьков в древнейших породах Земли показал полное отсутствие в них свободного кислорода, около 60% СО2 около 35% Н2S, SО2, NH3, НСl и НF, некоторое количество азота и инертных газов. В настоящее время имеется уже достаточно много неоспоримых доказательств того, что ранняя атмосфера Земли была бескислородной. Возникшая на Земле жизнь постепенно изменила эти условия и преобразовала химию верхних оболочек планеты.
Историю Земли делят на три большие отрезка: архей – первые примерно два млрд. лет ее существования, протерозой – следующие 2 млрд. лет и фанерозой, который начался около 570 млн. лет назад. Дофанерозойское время называют криптозоем, т. е. эрой скрытой жизни, поскольку древние породы не содержат скелетных отпечатков макроископаемых.
До недавнего времени считалось, что возникновению жизни на Земле предшествовала очень длительная (миллиарды лет) химическая эволюция, включающая спонтанный синтез и полимеризацию органических молекул, объединение их в сложные системы, предшествующие клеткам, постепенное становление обмена веществ и т. п. Возможность и легкость протекания абиогенного синтеза органических мономеров в условиях, моделирующих атмосферу древней Земли, была убедительно доказана еще в 50-х годах во многих лабораториях мира, начиная с известных опытов С. Миллера и Г. Юри. Однако путь от простых органических молекул до простейших живых клеток, обладающих способностью к размножению и аппаратом наследственности, считали очень долгим. К тому же древние породы казались безжизненными. С развитием тонких методов исследования органических молекул, содержащихся в архейских и протерозойских породах, а также остатков микроскопических клеточных структур, это мнение изменилось. Одним из самых удивительных палеонтологических открытий последних десятилетий является регистрация следов жизни даже в самых древних породах земной коры. Следовательно, эволюция от органических соединений до живых клеток протекала в очень сжатые сроки, в самом начале истории Земли. Очень рано появились и фотосинтезирующие организмы. Породы древностью 3,8 млрд. лет уже свидетельствуют о наличии на Земле цианобактерий (сине-зеленых водорослей), и следовательно, существовании фотосинтеза и биогенном выделении молекулярного кислорода. На границе архея и протерозоя цианобактерий уже были представлены богатым набором форм, сходных с современными. Наряду с ископаемыми остатками клеток сине-зеленых, в архейских слоях обнаружены следы их масштабной геологической деятельности – породы, сложенные строматолитами. Эти характерные полосчатые и столбчатые окаменелости возникают вследствие функционирования цианобактериальных сообществ, где тесно пространственно объединены фотосинтезирующие сине-зеленые и целый ряд других видов бактерий, деструкторов и хемосинтетиков. Каждая колония, таким образом, представляет отдельную экосистему, в которой сопряжены процессы синтеза и распада органического вещества. Современные строматолиты возникают лишь в крайне экстремальных условиях – в пересоленных или горячих водах, там, где нет более высокоорганизованной жизни.
Таким образом, можно предполагать, что уже в середине архея жизнь на Земле была представлена разнообразными типами прокариот, начинающими влиять на ее геологическую историю. В восстановительной среде кислород, выделяемый цианобактериями, сначала расходовался на окисление разнообразных соединений и не накапливался в свободном виде в атмосфере. При этом аммиак окислялся до молекулярного азота, метан и окись углерода – до СО2, сера и сероводород – до SO2 и SO3. Состав атмосферы постепенно изменялся.
Развитие жизни шло на фоне геологического развития планеты. В архее за счет химического и физического выветривания и эрозии суши началось формирование первых осадочных пород в океане, происходила их гранитизация и сформировались ядра будущих континентальных платформ. По некоторым предположениям, в начале протерозоя они составляли единый континент, названный Мегагеей, и были окружены единым океаном.
Тектоническая активность Земли, как показывает возраст изверженных пород, непостоянна во времени. Короткие эпохи повышенной активности чередуются с более длительными периодами покоя. Такой цикл занимает до 150–500 млн. лет. За историю планеты геологи насчитывают 19 тектоно-магматических эпох, четыре из которых приходятся на фанерозой и 15 – на криптозой. В результате шло возрастание неоднородности земной коры. Повышенный вулканизм, горообразовательные процессы или, наоборот, оседание платформ меняли площади мелководий и условия развития жизни. На Земле то ослабевала, то усиливалась климатическая зональность. Следы древних оледенений известны еще с архейской эры.
Считают, что ранняя жизнь имела сначала локальное распространение и могла существовать лишь на небольших глубинах в океане, примерно от 10 до 50 м. Верхние слои, до 10 м, пронизывались губительными ультрафиолетовыми лучами, а ниже 50 м не хватало света для фотосинтеза. Соли древнего океана отличались повышенным содержанием магния по сравнению с кальцием в соответствии с составом пород первичной земной коры. В связи с этим одни из главных осадочных пород архея – магнийсодержащие доломиты. В океане не возникали сульфатные осадки, так как не было анионов окисленной серы. В древних породах много легко окисляющихся, но не окисленных полностью веществ – графита, лазурита, пирита. В архее в результате деятельности анаэробных железобактерий сформировались значительные толщи магнетита, гематита – руд, содержащих недоокисленное двухвалентное железо. Вместе с тем установлено, что кислород, имеющийся в составе этих пород, фотосинтетического происхождения.
Постепенно увеличивающиеся масштабы фотосинтетической активности цианобактерий привели к появлению и накоплению свободного кислорода в окружающей среде. Переход восстановительной атмосферы в окислительную наметился в начале протерозоя, о чем свидетельствуют изменения химического состава земных пород.
В истории атмосферного кислорода имеют значение несколько его пороговых величин. На Земле, лишенной фотосинтеза, кислород образуется в атмосфере за счет фотодиссоциации молекул воды. Его содержание, по расчетам Г. Юри, не может превышать 0,001 от современного (точка Юри) и автоматически держится на этом уровне. При таком содержании кислорода может существовать только анаэробная жизнь. Появление молекулярного кислорода за счет фотосинтеза сделало возможным для живых клеток процесс дыхания, который представляет намного более эффективный путь высвобождения энергии, чем анаэробное брожение. С этих позиций важна величина 0,01 содержания кислорода от современного уровня – так называемая точка Пастера. Существует целый ряд микроорганизмов, способных переключать свой энергетический обмен с дыхания на брожение и обратно при колебаниях кислорода ниже или выше точки Пастера. Вместе с тем жизнь получила возможность распространиться почти до поверхности водоемов, так как ультрафиолетовые лучи за счет слабого озонового экрана могли теперь проникать на глубины не более метра.
Третье пороговое содержание О2 (точка Беркнера–Маршалла) соответствует 10% от современного. Оно определяет такую сформированность озонового экрана, при которой потоки жестких ультрафиолетовых солнечных лучей уже не достигают земной поверхности и не препятствуют развитию жизни. По современным исследованиям, переход точки Пастера мог произойти уже 2,5 млрд. лет назад, а 10-процентное содержание кислорода (точка Беркнера–Маршалла) было достигнуто уже в период 1,8–2,0 млрд. лет от современности.
Таким образом, на протяжении более двух миллиардов лет биосфера формировалась исключительно деятельностью прокариотов. Они полностью изменили геохимическую обстановку на Земле: сформировали кислородную атмосферу, очистили ее от токсических вулканических газов, связали и перевели в карбонатные породы огромное количество СО2, изменили солевой состав океана и сформировали громадные месторождения железных руд, фосфоритов и других ископаемых.
Формирование окислительной атмосферы повлекло за собой бурное развитие эукариотической жизни, энергетика которой основана на процессе дыхания. Очевидно, что эукариотная жизнь тесно связана с аэробной средой, подготовленной для нее прокариотами. Первые аэробные организмы могли возникнуть довольно рано в составе цианобактериальных сообществ, которые, по выражению палеонтологов, были своего рода «кислородными оазисами» в анаэробной среде.
В целом выделявшийся ранними фотосинтезирующими организмами кислород был токсичен и смертельно опасен для анаэробных форм жизни. После его накопления в воде и атмосфере анаэробные прокариотные сообщества оказались оттеснены в глубь грунтов, ко дну водоемов, т. е. в локальные местообитания с недостатком О2.
Во второй половине протерозоя в морях появились разные группы одноклеточных водорослей и простейших. Эукариотический фитопланктон усилил масштабы фотосинтеза. В свою очередь, и цианобактерии оставили в это время огромные залежи строматолитов, что свидетельствует об их высокой фотосинтетической активности. В конце протерозоя в морях создавалось уже так много биологической продукции, что на ее основе возникли древние нефтегазоносные залежи.
Последний этап протерозоя, занимающий около 100 млн. лет (венд), демонстрирует взрыв многообразия многоклеточных. Возможно, что многоклеточность появилась и раньше, так как пока еще нет ясности в отношении ряда спорных палеонтологических находок, но только в венде возникает огромное разнообразие водных животных и растений достаточно высокой организации. Крупные местонахождения вендской биоты обнаружены в разных регионах мира: Австралии, Южной Африке, Канаде, Сибири, на побережье Белого моря. Среди животных преобладали кишечнополостные и черви, были формы, напоминающие членистоногих, но в целом большинство из них отличалось своеобразным обликом и не встречалось в более поздних слоях. Среди придонных водорослей было много лентовидных слоевищных форм. Отличительная черта всей вендской биоты – бесскелетность. Животные достигали уже крупных размеров, некоторые – до метра, но имели желеобразные студенистые тела, оставившие отпечатки на мягких грунтах. Хорошая и массовая сохранность отпечатков косвенно свидетельствует об отсутствии трупоядов и крупных хищников в вендских биоценозах.
Органическое вещество биогенного происхождения становится постоянным и обязательным компонентом осадочных пород со второй половины протерозоя.
Новая ступень в развитии органического мира – массовое появление у многоклеточных разнообразных наружных и внутренних скелетов. С этого времени датируется фанерозой – «эра явной жизни», поскольку сохранность скелетных остатков в земных слоях позволяет уже более подробно восстанавливать ход биологической эволюции. В фанерозое резко увеличивается воздействие живых организмов на геохимию океана, атмосферы и осадочных пород. Сама возможность появления скелетов была подготовлена развитием жизни. За счет фотосинтеза Мировой океан терял СО2 и обогащался О2, что изменило подвижность целого ряда ионов. В телах организмов в качестве скелетной основы стали откладываться минеральные компоненты.
Извлекая ряд веществ из водной среды и накапливая их в своих телах, организмы становятся уже не косвенными, а непосредственными создателями многих осадочных пород, захораниваясь на дне водоемов. Накопление карбонатов стало преимущественно биогенным и известковым, поскольку СаСО3 более интенсивно используется для образования скелетов, чем МgСО3. Способность извлекать кальций из воды приобретают очень многие виды. В начале фанерозоя возникли также крупные залежи фосфоритов, созданных ископаемыми с фосфатным скелетом. Химическое осаждение SiO2 также становится биогенным.
В пределах фанерозоя выделяют три эры: палеозой, мезозой и кайнозой, которые, в свою очередь, подразделяют на периоды. Первый период палеозоя – кембрий – характеризуется таким взрывом биологического разнообразия, что он получил название кембрийской революции. Кембрийские породы насыщены многочисленными организмами. За этот период возникли практически все типы ныне существующих животных и целый ряд других, не дошедших до нашего времени. Появились археоциаты и губки, плеченогие, знаменитые трилобиты, разные группы моллюсков, ракушковые рачки, иглокожие и многие другие. Среди простейших возникли радиолярии и фораминиферы. Растения представлены разнообразными водорослями. Роль цианобактерий уменьшилась, так как строматолиты стали мельче и малочисленное.
В течение ордовика и силура разнообразие организмов в океане нарастало и их геохимические функции становились все более разнообразными. Появились предки позвоночных животных. Рифообразующая роль перешла от строматолитов к коралловым полипам. Основным же событием палеозоя стало завоевание суши растениями и животными.
Возможно, что поверхность материков была заселена прокариотами еще в докембрийское время, если учесть выносливость некоторых форм современных бактерий к жесткому излучению. Однако сложные формы жизни смогли освоить сушу только с формированием полноценного озонового экрана. Этот процесс, очевидно, начался в силурийское время, но основным периодом его развития стал девон. Первые наземные растения – сборная группа псилофитов – характеризуются уже целым рядом примитивных анатомо-морфологических приспособлений к обитанию в воздушной среде: возникают проводящие элементы, покровные ткани, устьица и т. п. По другим чертам своего строения псилофиты еще очень похожи на водоросли. Наземная растительность эволюционировала так быстро, что к концу девона в сырых и приводных местообитаниях возникли леса из плауновых, хвощовых и папоротникообразных. Еще раньше на суше появились мхи. Эта споровая растительность могла существовать только во влажных полузатопляемых биотопах и, захораниваясь в анаэробных условиях, оставила залежи нового типа ископаемых – каменных углей.
В морях девона, наряду с бесчелюстными, уже господствовали разные формы рыб. Одна из групп – кистеперые, приобретшие ряд приспособлений к обитанию в мелких, замусоренных отмирающими растениями водоемах, дала начало первым примитивным земноводным. Еще с силура известны первые наземные членистоногие. В девоне уже существовали мелкие почвенные членистоногие, очевидно, потреблявшие гниющую органику. Однако деструкционный процесс на суше был еще недостаточно эффективным, и биологический круговорот – незамкнутым. Массовое захоронение растительной органики и выход ее из системы биологического круговорота повлекли за собой ускоренное накопление О2 в воздухе. Содержание атмосферного кислорода в начале фанерозоя составляло около трети от современного. В девоне, и особенно в следующем периоде – карбоне, оно достигло современного и даже превзошло его. Карбоновые леса – вершина развития споровой растительности. Они состояли из древовидных плауновых – лепидодендронов и сигиллярий, гигантских хвощевых – каламитов, мощных и разнообразных папоротниковых. Высокая продукция растений стимулировалась и достаточно большим содержанием СО2 в атмосфере, которое было примерно в 10 раз выше современного. В каменных углях карбона содержится большое количество углерода, изъятого из воздушных запасов СО2 в тот период.
Уже в карбоне возникли растения и животные, способные завоевывать и маловодные пространства суши: первые голосеменные – кордаиты и первые пресмыкающиеся. Воздушную среду освоили первые летающие насекомые. В морях процветали хрящевые и костистые рыбы, головоногие моллюски, кораллы, остракоды и брахиоподы. Конец палеозоя, пермский период, характеризовался резким изменением климатических условий. Интенсивные вулканизм и горообразовательные процессы (завершение Герцинской тектонической эпохи) привели к регрессии моря и высокому стоянию континентов: южного суперконтинента Гондваны и северного– Лавразии. Резко усилилась географическая зональность. В Гондване обнаружены следы обширного оледенения. В Лавразии, в зоне засушливого климата возникают большие площади осадков испарения – гипсов, каменной и калийной соли (месторождения Соликамска), ангидритов, доломитов. В тропических районах, однако, продолжается накопление каменных углей (Кузбасс, Печора, Китай). Споровая растительность приходит в резкий упадок. Масса кислорода в атмосфере сокращается до значений, характерных для начала палеозоя.
На границе палеозойской и мезозойской эр, в конце перми и начале триаса произошло, на фоне смены флор, глубокое обновление морской и наземной фаун. Среди растений господствуют голосеменные – цикадовые, гинкговые и хвойные. Вымирают многие группы земноводных и ранних пресмыкающихся, в морях исчезают трилобиты.
В мезозое начался распад Гондваны на отдельные континенты и расхождение их друг от друга. Середина мезозоя (юра) характеризуется снова расширением мелководий, ровным теплым климатом и ослаблением географической зональности. Юрские леса были по составу значительно разнообразнее карбоновых, менее влаголюбивы и произрастали не только в болотах и по краям водоемов, но и внутри континентов. По долинам и поймам рек они также оставляли залежи каменных углей. Среди позвоночных на суше господствуют рептилии, освоившие также воздушную и вторично водную среду. Возникают различные группы динозавров, птерозавры, ихтиозавры и многие другие формы.
В мезозое резко сокращается отложение карбонатных пород, одной из причин его считают дальнейшее уменьшение СО2 в атмосфере и океане в связи с расходом на фотосинтез. Меняется и сам характер карбонатных отложений – они представлены в основном биогенным мелом и мергелями с повышенным содержанием кальция. В начале мезозоя возникает новая группа одноклеточных водорослей – диатомовые с кремниевыми панцирями и за их счет начинают формироваться тонкие кремниевые илы и новые породы – диатомиты. Их толщи достигают в Мировом океане местами 1600 м при скорости накопления 7–30 см за 1000 лет. Интенсивность фотосинтеза и масштабы захоронения органики очень велики, расходы кислорода на окисление горных пород в межтектонический период незначительны, поэтому к середине мезозоя происходит резкое увеличение массы кислорода в воздухе, которая превышает современную.
Развитие растительности привело к появлению новой прогрессивной группы – покрытосеменных. Это произошло в меловой период, к концу которого они, быстро распространяясь по всем материкам, значительно потеснили флору голосеменных. Параллельно с цветковыми растениями бурно эволюционируют различные группы насекомых-опылителей и потребителей тканей покрытосеменных. Цветковые растения отличаются ускоренными темпами роста и развития, разнообразием синтезируемых соединений. Будучи независимыми от воды в процессах оплодотворения, они характеризуются тем не менее более высоким потреблением влаги на процессы транспирации более интенсивным вовлечением в круговорот элементов зольного питания и особенно азота. С появлением растительности покрытосеменных круговорот воды на планете на 80–90% стал определяться их активностью. Под их влиянием начали формироваться близкие к современным почвы с поверхностным аэробным разложением растительных остатков. Значительно замедлились процессы угленакопления.
В течение всего мелового периода господствовали пресмыкающиеся, многие из которых достигали гигантских размеров. Существовали также зубатые птицы, возникли плацентарные млекопитающие, ведущие свое происхождение еще от примитивных триасовых предков. К концу периода распространились птицы, близкие к современным. В морях процветали костистые рыбы, аммониты и белемниты, фораминиферы.
Конец мелового периода характеризовался началом новой тектонической эпохи и глобальным похолоданием. Смена флор повлекла за собой и смену фаун, усилившуюся в результате влияния глобальных тектонических и климатических процессов. На границе мезозойской и кайнозойской эр произошло одно из наиболее грандиозных вымираний. С лица Земли исчезли динозавры и большинство других рептилий. В морях вымерли аммониты и белемниты, рудисты, ряд планктонных одноклеточных и многие другие группы. Началась интенсивная адаптивная радиация наиболее прогрессивных групп позвоночных – млекопитающих и птиц. В наземных экосистемах большую роль стали играть насекомые.
Наступившая кайнозойская эра характеризовалась возрастанием аэробных условий в биосфере не за счет увеличения массы кислорода, а за счет изменения почвенных режимов. Увеличилась полнота биологических круговоротов. Влажные леса палеогена еще оставили значительные накопления каменных и бурых углей. Одновременно с этим расцвет активной растительности покрытосеменных понизил содержание СО2 в атмосфере до современного уровня, в результате чего снизилась и общая эффективность фотосинтеза. В неогене нарастающий аэробиозис почв и водоемов прекратил процессы образования угля и нефти. В современную эпоху происходит только торфообразование в болотистых почвах.
В течение кайнозоя произошли резкие смены климатов. В результате эволюции покрытосеменных в периоды иссушения в середине эры возникли травянистые растительные формации и новые типы ландшафтов – открытые степи и прерии. В конце усилилась климатическая зональность и наступил ледниковый период с распространением льдов на значительной части Северного и Южного полушарий. Последняя волна ледников отступила всего около 12 тыс. лет назад.
Развитие органического мира
Эон | Эра | Период | Возраст (начало), млн. лет | Органический мир |
Криптозой | Архей | 4500±100 | Образование Земли. Возникновение прокариот и примитивных эукариот. | |
Протерозой | 2600±100 | Распространены водоросли, бактерии, все типы беспозвоночных. | ||
Фанерозой | Палеозой | Кембрий | 570±10 | Процветание водорослей и водных беспозвоночных. |
Ордовик | 495±20 | |||
Силур | 418±15 | Появление наземных растений (псилофитов) и беспозвоночных. | ||
Девон | 400±10 | Богатая флора псилофитов, появляются мхи, папоротниковидные, грибы, кистеперые и двоякодышащие рыбы. | ||
Карбон | 360±10 | Обилие древовидных папоротников, исчезновение псилофитов. Доминируют земноводные, моллюски, рыбы; появляются рептилии. | ||
Пермь | 290±10 | Богатая флора травянистых и семенных папоротников, появление голосеменных; вымирание древовидных папоротниковидных. Господство морских беспозвоночных, акул; развитие рептилий; вымирают трилобиты. | ||
Мезозой | Триас | 245±10 | Преобладают древние голосемянные; вымирают семенные папоротники. Преобладают земноводные рептилии; появляются костистые рыбы, млекопитающие. | |
Юра | 204±5 | Господствуют современные голосемянные; появляются первые покрытосемянные; вымирают древние голосемянные. Господствуют гигантские рептилии, костистые рыбы, насекомые. | ||
Мел | 130±5 | Доминируют современные покрытосемянные; сокращаются папоротники и голосемянные. Преобладают костистые рыбы, первоптицы, мелкие млекопитающие; вымирают гигантские рептилии. | ||
Кайнозой | Палеоген | 65±3 | Широко распространены покрытосемянные, особенно травянистые. Доминируют млекопитающие, птицы, насекомые. Исчезают многие рептилии, головоногие моллюски. | |
Неоген | 23±1 | |||
Антропоген (четвертич.) | 1,8 | Современные растительный и животный мир. Эволюция и господство человека. |