Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Линейные однородные дифференциальные уравнения с постоянными коэффициентами




Для уравнений (1),

у которых (.2),

где - постоянные величины, существует способ, с помощью которого задачу нахождения фундаментальной системы решений можно свести к задаче нахождения корней некоторого вспомогательного алгебраического уравнения.

Для этого будем искать решения уравнения в виде . При этом (.3).
Подставим полученные величины в уравнение (1):
, или . Поскольку при всех , из этого уравнения следует, что (4).

Таким образом, функция удовлетворяет уравнению (1) тогда и только тогда, когда удовлетворяет уравнению (4). Уравнение (4) называется характеристическим уравнением уравнения (1).

Далее мы установим вид фундаментальной системы решений уравнения (1) в зависимости от свойств корней уравнения (4).

Случай 1. Пусть все корни уравнения (4) действительные и различные. Обозначим их и рассмотрим функции , являющиеся решениями уравнения (1) по доказанному выше. Докажем линейную независимость. Это будет означать, что - фундаментальная система решений (1). Определитель Вронского этой системы функций равен, с учетом (2)
или, после вынесения из столбцов множителей . Определитель представляет собой известный определитель Вандермонда. Он равен . Поэтому если все числа попарно различны, этот определитель не равен . Следовательно, функции линейно независимы и составляют искомую фундаментальную систему решений.

2 случай. Все корни - различные, но среди них есть комплексные числа. Формально - это снова фундаментальная система решений уравнения, т.к. эти функции линейно независимы (их определитель Вронского, как и в случае 1, отличен от 0). Однако мы рассматриваем уравнение с действительными коэффициентами и нам было бы желательно построить фундаментальную систему решений, состоящую из действительных функций.

Пусть - любой комплексный корень уравнения (4). Поскольку (.4) имеет действительные коэффициенты, число также является его корнем. Значит - тоже решение уравнения (1).Легко видеть, , т.е. являются линейными комбинациями и . Разумеется, и также можно линейно выразить через и . Поэтому линейная независимость решений и с остальными решениями уравнения (19.1) равносильна линейной независимости и с остальными решениями.

Подведем итоги. В случае, когда все - различные, причем - действительные, а - пара комплексно сопряженных чисел , причем , то фундаментальная система решений уравнения (1) имеет вид: , .

Случай 3. Корни характеристического уравнения действительные, но среди них есть кратные. Напомним, что число называется корнем многочлена кратности , если , где - многочлен, причем .

Пусть корни имеют, соответственно, кратности . Тогда можно доказать (но мы оставим это без доказательства), что функции
,
,


составляют фундаментальную систему решений уравнения (.1)

Пример. Приведем пример, подтверждающий это утверждение. Уравнению соответствует характеристическое уравнение , . Оно имеет корень с кратностью . Рассмотрим функции и . и подставляя в исходное уравнение, получаем , т.е. верное равенство. Далее, , и подстановка функции в уравнение дает верное равенство: . Итак, и - действительно решения уравнения . Эти функции линейно независимы, т.к. из равенства при следует . Значит, . Тогда при .

В случае 4, когда действительные корни уравнения (.1) имеют кратности , а комплексные корни имеют кратности , можно доказать, что функции
,

,
,
,

,
,
образуют фундаментальную систему решений уравнения (1).





Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 443 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Большинство людей упускают появившуюся возможность, потому что она бывает одета в комбинезон и с виду напоминает работу © Томас Эдисон
==> читать все изречения...

2529 - | 2189 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.