Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Качественная оценка коэффициента корреляции




Если rху имеет максимальное значение, равное единице, то мы имеем дело со строгой линейной положительной зависимости между выборочными значениями x и у (на диаграмме рассеяния все точки находятся точно на восходящей прямой линии).

Если rху принимает минимальное значение -1, когда существует линейная отрицательная зависимость (точки лежат точно на нисходящей прямой линии). Последняя ситуация часто наблюдается при рассмотрении зависимости спроса на товар от его цены.

Величина rху = 0 показывает, что зависимость между наблюдениями x и у в выборке отсутствует.

Теснота связи Величина линейного коэффициента корреляции
Прямая связь Обратная связь
Практически отсутствует 0,1 – 0,3 (-0,1) – (-0,3)
Слабая 0,3 – 0,5 (-0,3) –(- 0,5)
Умеренная 0,5 – 0,7 (-0,5) – (-0,7)
Сильная 0,7 – 1,0 (-0,7) – (-1,0)

 

Оценка значимости коэффициента парной корреляции

Любая совокупность наблюдений представляет собой некоторую выборку. Значит, значение любого показателя, рассчитанное на основе этой выборке, не может рассматриваться как истинное. В связи с этим, возникает необходимость проверки значимости этого показателя.

Для оценки значимости коэффициента корреляции применяется t - критерий Стьюдента. Фактическое значение этого критерия рассчитывается по формуле:

.

Вычисленное по этой формуле значение сравнивается с табличным значением t- критерия, которое берется из таблицы значений t- Стьюдента с учетом заданного уровня значимости и числа степеней свободы (α = 0,05 или 0,01, k = n -2).

Если > , то полученное значение коэффициента корреляции признается значимым. Таким образом, делается вывод о том, что между исследуемыми переменными есть статистическая взаимосвязь.

Парный коэффициент детерминации

Зная линейный коэффициент корреляции, можно рассчитать парный коэффициент детерминации r2ху. Он показывает, какая доля вариации переменной Y учтена в модели и обусловлена влиянием на неё переменной X.

 

Пример

По представленным данным о спросе и доходе населения за ряд текущих лет определить степень влияния дохода населения на его спрос. Оценить значимость коэффициента корреляции.

Год Доход, Х Спрос, Y
      -5 -3,3 16,5   10,89
      -3 -1,3 3,9   1,69
      -1 -1,3 1,3   1,69
    10,3          
    10,5   1,2 3,6   1,44
        3,7 18,5   13,69
Итого   55,8     44,80 70,00 30,40
Среднее   9,3     7,47 11,67 5,07

Средние значения случайных величин Х и Y рассчитаем по формулам, соответственно:

.

Стандартные ошибки случайных величин Х и Y рассчитаем по формулам, соответственно:

Рассчитаем ковариацию:

.

Аналогичные расчеты можно получить, используя встроенные возможности электронных таблиц Excel: КОВАР(массив1; массив2), которая возвращает ковариацию, то есть среднее произведений отклонений для каждой пары точек данных.

Синтаксис функции:

Массив1 — это первый массив или интервал данных.

Массив2 — это второй массив или интервал данных.

Рассчитаем коэффициент парной корреляции:

.

Аналогичные расчеты также можно получить, используя встроенные возможности электронных таблиц Excel: КОРРЕЛ(массив1;массив2), которая возвращает коэффициент корреляции меду интервалами ячеек массив1 и массив2.

Синтаксис функции:

Массив1 — это ячейка интервала значений.

Массив2 — это второй интервал ячеек со значениями.

Оценим значимость коэффициента корреляции.

Для этого рассчитаем значение t – статистики:

Табличное значение критерия Стьюдента равно:

Воспользуемся встроенными возможности электронных таблиц Excel: функция СТЬЮДРАСПОБР(вероятность;степени_свободы) возвращает t-значение распределения Стьюдента как функцию вероятности и числа степеней свободы.

Синтаксис функции:

Вероятность - вероятность, соответствующая двустороннему распределению Стьюдента (α = 0,05 или 0,01).

Степени_свободы— число степеней свободы, характеризующее распределение (k = n -2).

Сравним числовые значения критериев:

.

Полученное значение коэффициента корреляции значимо.

Вычислим парный коэффициент детерминации:

r2ху = 0,9432.

Таким образом, доход населения (Х) оказывает весьма высокое влияние на спрос (Y). На 94% спрос населения зависит от дохода. Оставшиеся 6% (100 – 94) - это влияние неучтённых факторов.


Регрессионный анализ

После установления наличия корреляционной зависимости между признаками, экономистов интересует установление аналитической формы этой зависимости. Это является основной задачей регрессионного анализа.





Поделиться с друзьями:


Дата добавления: 2016-12-04; Мы поможем в написании ваших работ!; просмотров: 1072 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2230 - | 2117 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.16 с.