Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Тема 1.2 Кривые второго порядка на плоскости




Методические указания для выполнения лабораторных работ по теме

Математика в «Excel»

Оглавление

Раздел 1. Аналитическая геометрия и линейная алгебра. 1

Тема 1.1 Декартова система координат. 1

Тема 1.2 Кривые второго порядка на плоскости. 2

Тема 1.3 Графическое решение системы уравнений. 2

Тема 1.4 Использование программы Excel в линейной алгебре. 3

Раздел 2. Элементы математического анализа. 4

Тема 2.1. Определенный интеграл. 5

Раздел 3. Задачи оптимизации. 6

Тема 3.1 Решение уравнения с одним неизвестным.. 6

Тема 3.2 Аппроксимация экспериментальных данных. 7

 


 

Раздел 1. Аналитическая геометрия и линейная алгебра

Тема 1.1 Декартова система координат

Самая простая и наиболее распространенная система координат на плоскости называется декартовой по имени известного математика и философа Рене Декарта. Декартова система координат образована двумя перпендикулярными осями, осью Х и осью Y.

Точка пересечения осей называется началом и служит одновременно началом координат на каждой из осей. Масштаб на осях выбирается одинаковый (иначе система координат будет называться аффинной, а не декартовой).

Прямая линия на плоскости

Уравнением линии на плоскости x0y может записываться по разному:

  1. Уравнение прямой с угловым коэффициентом y=kx+b, где k=tga – угловой коэффициент прямой, a– угол наклона прямой к оси x, b – ордината точки пересечения прямой с осью y.
  2. Уравнение прямой, проходящей через две данные точки (x1, y1), (x2, y2): .
  3. Общее уравнение прямой Ax+By+C=0.

Всегда важно указать, какие значения может принимать независимая переменная х. Собственно говоря, символом х обозначается произвольный элемент некоторого числового множества, которое называется областью определения функции.

С помощью системы координат мы можем каждую функцию изобразить наглядно, в виде графика.

В программе Excel для построения прямых, а также кривых, может быть использован специальный инструмент – Мастер диаграмм, который дает возможность строить различные типы графиков. Для применения Мастера диаграмм необходимо ввести точки прямой линии в рабочую таблицу, вызвать Мастер диаграмм, задать тип диаграммы, диапазоны данных и подписей оси x, ввести название осей.

Пример.

Рассмотрим построение прямой в Excel на примере уравнения y=2x+1 на интервале с шагом D=0,5.

Для решения задачи на чистый лист Excel занести значения аргумента и подсчитать значение функции. В ячейку A1 введите слово Аргумент, в ячейку B1 – слово Прямая. В ячейку А2 введите левую границу диапазона «-3». В ячейку А3 – «-2,5». Выделите блок ячеек А2:А3 и при помощи маркера заполнения протяните и заполните весь диапазон изменения аргумента. В ячейку В2 введите формулу =2*А2 + 1 (ссылку на ячейку можно заполнить при помощи щелчка на соответствующей ячейке). Затем с использованием маркера заполнения копируем эту формулу в весь диапазон. На Панели инструментов Стандартная необходимо нажать кнопку Мастер диаграмм. В появившемся диалоговом окне указать в правом поле тип диаграммы График и подтип диаграммы в правом поле – График с маркерами. После чего нажимаем в диалоговом окне кнопку Далее.

В появившемся диалоговом окне Мастер диаграмм (шаг 2 из 4): источник данных диаграммы необходимо выбрать вкладку Диапазон данных и в поле Диапазон указать интервал данных, т.е. ввести ссылку на ячейки, содержащие данные, необходимые для представления на диаграмме (при помощи мышки выделить диапазон В1:В14. В рабочем поле должна появиться надпись Лист1!$B$1:$B$14. Ряды в столбцах. Если диалоговое окно закрывает столбцы с данными, его можно отодвинуть, потянув за строку заголовка указателем мыши. Во вкладке Ряд этого же диалогового окна необходимо указать Подписи по оси Х. Для этого, поставив курсор в поле мышкой отметьте диапазон аргумента (Лист1!$A$2:$A$14). Нажмите кнопку Далее. В третьем окне Мастера диаграмм (шаг 3 из 4): параметры диаграммы нужно ввести заголовок диаграммы (если его нет) и название осей (во вкладке Заголовки). Во вкладке Легенда щелчком мыши установить флажок в поле добавить легенду. После чего нажать Далее. В четвертом окне Мастер диаграмм (шаг 4 из 4): размещение диаграммы необходимо указать место расположения диаграммы (на отдельном или текущем листе). Если диаграмма в демонстрационном поле имеет нужный вид, нажать кнопку Готово. В противном случае нажать кнопку Назад и изменить установки.

 

Тема 1.2 Кривые второго порядка на плоскости

К кривым второго порядка относятся парабола, гипербола, окружность, эллипс.

Параболой называется множество точек, расстояние от которых до данной точки, называемой фокусом, и до данной прямой, называемой директрисой, равны. Общий вид уравнения параболы:

В Excel построение параболы осуществляется аналогично построению прямой. При этом уравнение должно быть предварительно приведено к виду y=f(x).

Пример.

Построить параболу y=x2 в диапазоне хÎ[-3;3] с шагом 0,5.

Решение.

Пусть открыть чистый рабочий лист, иначе добавить рабочий лист. По аналогии с предыдущим примером заполните исходные данные. Вызовите Мастер диаграмм. Постройте график функции y=x2.





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 339 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2281 - | 2077 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.