Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Собственные колебания кузова на рессорах с линейными упругими элементами с гасителем колебаний вязкого трения.




 

До сих пор здесь рассматривалась консервативная система, в которой отсутствуют потери энергии колебаний. В действительности же при всех колебаниях системы в ней имеет место трение, при котором энергия колебаний превращается в тепло и рассеивается в окружающее пространство. Более того, в тех случаях, когда конструкторы заинтересованы в быстром уменьшении амплитуд колебания в системе, они в конструкциях, подверженных колебаниям, специально устанавливают гасители колебаний. В частности, в рессорном подвешивании вагонов всегда предусматривается гашение колебаний тем или иным путем, а чаще всего прямой постановкой специальных гасителей колебаний. Описание конструкций гасителей колебаний в рессорном подвешивании вагонов дано в курсе «Конструкции вагонов».

 

Сначала рассмотрим свободные колебания системы с одной степенью свободы и гидравлическим гасителем колебаний (сила пропорциональна скорости).

Уравнение движения:

(2.1)

Разрешим это уравнение относительно старшей производной и приведем к нормальной форме – к системе дифференциальных уравнений, каждое из которых первого порядка.

Для этого введем обозначения: z=q1, =q2.

В нормальной форме математическая модель имеет вид: (2.2)

 

Решение этой системы ищем в виде следующих функций: (2.3)

Подставив функции (2.3) в систему (2.2), перенеся все члены влево и прировняв коэффициенты при к нулю, получим следующую систему однородных алгебраических уравнений:

(2.4)

Система (2.4) имеет ненулевое решение относительно неизвестных A1 и A2 только в случае равенства нулю её определителя:

(2.5)

 

Полученный определитель называется характеристическим. Раскрыв его получим характеристическое уравнение:

Если s равно одному из корней характеристического уравнения, то условие (2.5) будет выполнено. Корни этого уравнения при условии — являются комплексно-сопряженными числами и определяются выражениями — (2.6)

Величина параметра β называется критической, если её определить из условия равенства нулю подкоренного выражения в (2.6),то есть

или , где – собственная частота одноосного вагона без трения в подвешивании.

Введем понятие коэффициента относительного демпфирования D как отношение параметра β к его критической величине: D=β/βкр. Используя понятия и выражения, определяющие λ и D, выражения для корней характеристического уравнения приведем к виду

(2.7)

Используя выражения (2.7), решение исходного уравнения (2.1) представим суммой частных решений, соответствующих s1 и s2:

где , – начальные условия (смещение и скорость смещения кузова при t=0).

Если принять начальную скорость равной нулю ( =0), и сложить гармонические составляющие процесса, то решение примет вид

(2.8)

 

 

Введя обозначения:

           
   
 
   
 


(2.9)

 

 

решение можно представить в более компактной форме

(2.10)

 

 
 

Графически процесс затухающих колебаний соответствующих решению (2.10) представлен на рис. 2.2.

Рис. 2.2. Процесс затухающих колебаний

Скорость затухания этого процесса оценивается следующими его характеристиками: коэффициентом затухания – ψ, равным отношению амплитудных отклонений процесса, сдвинутых по времени на один период и логарифмическим декрементом – δ. Выражения, определяющие эти характеристики можно представить в виде

, (2.11)

Из соотношений (2.11) следует, что амплитудные отклонения кузова в прцессе затухающих колебаний изменяются по закону геометрической прогрессии, то есть последующее отклонение равно произведению предыдущего на постоянное число – знаменатель прогрессии. Если рассматривать амплитудные отклонения в одном направлении от положения равновесия, то знаменателем прогрессии будет - , если в обоих – . Соотношения между членами прогрессии в этих случаях будут представляться, соответственно:

или (2.12)

Коэффициентом затухания можно пользоваться для оценки скорости затухания процесса, однако, более часто для этой цели пользуются логарифмическим декрементом – δ,

=δ. (2.13)

Простейшие преобразования дают возможность получить следующие соотношения между δ и D:

. (2.14)

 

Разрешив выражение (2.14) относительно D будем иметь

(2.15)

Таким образом, "вязкое" трение существенно влияет на следующие динамические свойства вагона (свойства вагона как динамической системы):

Скорость затухания свободных колебаний;

Величину частоты свободных колебаний (собственной частоты).

 





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 660 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если президенты не могут делать этого со своими женами, они делают это со своими странами © Иосиф Бродский
==> читать все изречения...

2486 - | 2350 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.