Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Основание — вещество, являющееся в растворе акцептором протонов.




Сильные кислоты [HCl, H2SO4] и сильные основания [NaOH, KON, Ca(OH)2] в организме не образуются. В разбавленных растворах они полностью ионизированы.

В отличие от них, слабые кислоты [уксусная — CH3COOH, угольная — H2CO3] и слабые основания [гидрокарбонат калия — KHCO3, гидрофосфат натрия — NaH2PO4] при растворении ионизируются не полностью.

В организм с пищей поступают вода, белки, жиры, углеводы, минеральные соединения, витамины. При метаболизме из них образуется большое количество эндогенных кислот: молочная, угольная, пировиноградная, ацетоуксусная, b-оксимасляная, серная, соляная и др.

Выделяют летучие и нелетучие эндогенные кислоты.

Нелетучие кислоты не способны превращаться в газообразное вещество и не удаляются легкими. К основным нелетучим кислотам относятся серная (образуется при катаболизме белков и серосодержащих аминокислот метионина и цистеина), b-оксимасляная, ацетоуксусная, молочная, пировиноградная (образуются при неполном окислении жиров и углеводов). Ежедневно в организме образуется около 1 мэкв нелетучих кислот на 1 кг массы тела.

В живом организме образуется лишь одна летучая кислота — угольная — (H2CO3). Она легко расщепляется на H2O и CO2. Углекислый газ выводится из организма легкими.

Параметры и показатели оценки кислотно-основного состояния

Параметры оценки КОС делят на основные и дополнительные (таблица 14-1).

Основные параметры

Оценку КОС и его сдвигов во врачебной практике проводят с учетом нормального диапазона его основных параметров: pH, pCO2, стандартный бикарбонат плазмы крови SB (Standart Bicarbonate), буферные основания капиллярной крови BB (Buffer Base) и избыток оснований капиллярной крови BE (Base Excess). Учитывая, что [H+] крови адекватно отражает этот показатель в разных регионах организма, а также простоту процедуры взятия крови для анализа, основные показатели КОС исследуют именно в плазме крови.

Дополнительные показатели

С целью выяснения причины и механизма развития негазовых форм нарушений КОС определяют ряд дополнительных показателей крови (КТ, МК) и мочи (титруемая кислотность — ТК и аммиак).

Таблица 14-1. Показатели кислотно-основного равновесия

Показатель Значения в системе измерений Традиционные единицы
Основные
pH крови: Ú артериальная; Ú венозная; Ú капиллярная 7,37–7,45; 7,34–7,43; 7,35–7,45 – – –
pCO2 4,3–6,0 кПа 33–46 мм рт. ст.
Стандартный бикарбонат плазмы крови (SB) 22–26 ммоль/л
Буферные основания капиллярной крови (BB) 44–53 ммоль/л
Избыток оснований капиллярной крови (BE) От –3,4 до +2,5 ммоль/л
Дополнительные
КТ крови 0,5–2,5 мг%
МК крови 6–16 мг%
ТК суточной мочи 20–40 ммоль/л
Аммиак суточной мочи (NH4) 10–107 ммоль/сут (20–50 ммоль/л) – –

Механизмы устранения сдвигов кислотно-основного состояния организма

Учитывая важность поддержания [H+] в сравнительно узком диапазоне для оптимальной реализации процессов жизнедеятельности, в эволюции сформировались системные, хорошо интегрированные механизмы регуляции этого параметра в организме в норме и устранения его сдвигов при развитии патологии.

В норме в организме образуются почти в 20 раз больше кислых продуктов, чем основных (щелочных). В связи с этим в нем доминируют системы, обеспечивающие нейтрализацию, экскрецию и секрецию избытка соединений с кислыми свойствами. К этим системам относятся химические буферные системы и физиологические механизмы регуляции КЩР.

Химические буферные системы

Химические буферные системы представлены, в основном, бикарбонатным, фосфатным, белковым и гемоглобиновым буферами.

Буферные системы начинают действовать сразу же при увеличении или снижении [H+], а следовательно, представляют собой первую мобильную и действенную систему компенсации сдвигов рН. Например, буферы крови способны устранить умеренные сдвиги КОС в течение 10–40 с. Емкость и эффективность буферных систем крови весьма высока (таблица 14-2).

Таблица 14-2. Относительная емкость буферов крови, %

Буфер Плазма крови Эритроциты
Гидрокарбонатный    
Гемоглобиновый  
Белковый  
Фосфатный    
Общая емкость    

Принцип действия химических буферных систем заключается в трансформации сильных кислот и сильных оснований в слабые. Эти реакции реализуются как внутри- так и внеклеточно (в крови, межклеточной, спинномозговой и других жидких средах), но в наибольшем масштабе — в клетках.

Гидрокарбонатная буферная система

Гидрокарбонатная буферная система — основной буфер крови и межклеточной жидкости. Она составляет около половины буферной емкости крови и более 90% — плазмы и интерстициальной жидкости. Гидрокарбонатный буфер внеклеточной жидкости состоит из смеси угольной кислоты H2ÑO3 и гидрокарбоната натрия NaHCO3. В клетках в состав соли угольной кислоты входят калий и магний.

Гидрокарбонатный буфер — система открытого типа, она ассоциирована с функцией внешнего дыхания и почек. Система внешнего дыхания поддерживает оптимальный уровень рCO2 крови (и как следствие — концентрацию H2CO3), а почки — содержание аниона HCO3. Именно это обеспечивает функционирование системы HCO3/H2CO3 в качестве эффективного и емкого буфера внеклеточной среды даже в условиях образования большого количества нелетучих кислот (таблица 14-3).

Таблица 14-3. Начальные сдвиги и компенсаторные реакции при нарушениях кислотно-основного равновесия

Нарушение КОС Начальный сдвиг КОС Реакция компенсации
Дыхательный ацидоз ¯ pH, ­ pCO2 ­ HCO3
Дыхательный алкалоз ­ pH, ¯ pCO2 ¯ HCO3
Негазовый ацидоз ¯ pH, ¯ HCO3 ¯ pCO2
Негазовый алкалоз ­ pH, ­ HCO3- ­ pCO2

Гидрокарбонатную буферную систему используют как важный диагностический показатель состояния КЩР организма в целом.

Фосфатная буферная система

Фосфатная буферная система играет существенную роль в регуляции КЩР внутри клеток, особенно канальцев почек. Это обусловлено более высокой концентрацией фосфатов в клетках в сравнении с внеклеточной жидкостью (около 8% общей буферной емкости). Фосфатный буфер состоит из двух компонентов: щелочного — Na2HPO4, и кислого — (NaH2PO4).

Эпителий канальцев почек содержит компоненты буфера в максимальной концентрации, что обеспечивает его высокую мощность. В крови фосфатный буфер способствует поддержанию («регенерации») гидрокарбонатной буферной системы. При увеличении уровня кислот в плазме крови (содержащей и гидрокарбонатный, и фосфатный буфер) увеличивается концентрация H2CO3 и уменьшается содержание NaHCO3:

H2CO3 + Na2HPO4 Û NaHCO3 + NaH2PO4.

В результате избыток угольной кислоты устраняется, а уровень NaHCO3 возрастает.

Белковая буферная система

Белковая буферная система — главный внутриклеточный буфер. Он составляет примерно три четверти буферной емкости внутриклеточной жидкости.

Компонентами белкового буфера являются слабодиссоциирующий белок с кислыми свойствами (белок‑COOH) и соли сильного основания (белок‑COONa). При нарастании уровня кислот они взаимодействуют с солью белка с образованием нейтральной соли и слабой кислоты. При увеличении концентрации оснований реакция их происходит с белком с кислыми свойствами. В результате вместо сильного основания образуется слабоосновная соль.

Гемоглобиновая буферная система

Гемоглобиновая буферная система — наиболее емкий буфер крови — составляет более половины всей ее буферной емкости. Гемоглобиновый буфер состоит из кислого компонента — оксигенированного Hb — HbO2 и основного — неоксигенированного. HbO2 примерно в 80 раз сильнее диссоциирует с отдачей в среду H+, чем Hb. Соответственно, он больше связывает катионов, главным образом K+.

Основная роль гемоглобиновой буферной системы заключается в ее участии в транспорте CO2 от тканей к легким.

В капиллярах большого круга кровообращения HbO2 отдает кислород. В эритроцитах CO2 взаимодействует с H2O и образуется H2CO3. Эта кислота диссоциирует на HCO3 и H+, который соединяется с Hb. Анионы HCO3из эритроцитов выходят в плазму крови, а в эритроциты поступает эквивалентное количество анионов Cl. Остающиеся в плазме крови ионы Na+ взаимодействуют с HCO3 и благодаря этому восстанавливают ее щелочной резерв.

В капиллярах легких, в условиях низкого pСО2 и высокого pО2, Hb присоединяет кислород с образованием HbO2. Карбаминовая связь разрывается, в связи с чем высвобождается CO2. При этом, HCO3 из плазмы крови поступает в эритроциты (в обмен на ионы Cl) и взаимодействует с H+, отщепившимся от Hb в момент его оксигенации. Образующаяся H2CO3 под влиянием карбоангидразы расщепляется на CO2 и H2O. CO2 диффундирует в альвеолы и выводится из организма.

Карбонаты костной ткани

Карбонаты костной ткани функционируют как депо для буферных систем организма. В костях содержится большое количество солей угольной кислоты: карбонаты кальция, натрия, калия и др. При остром увеличении содержания кислот (например, при острой сердечной, дыхательной или почечной недостаточности, шоке, коме и других состояниях) кости могут обеспечивать до 30–40% буферной емкости. Высвобождение карбоната кальция в плазму крови способствует эффективной нейтрализации избытка H+. В условиях хронической нагрузки кислыми соединениями (например, при хронической сердечной, печеночной, почечной, дыхательной недостаточности) кости могут обеспечивать до 50% буферной емкости биологических жидкостей организма.

Физиологические механизмы

Наряду с мощными и быстродействующими химическими системами в организме функционируют органные механизмы компенсации и устранения сдвигов КОС. Для их реализации и достижения необходимого эффекта требуется больше времени — от нескольких минут до нескольких часов. К наиболее эффективным физиологическим механизмам регуляции КОС относят процессы, протекающие в легких, почках, печени и ЖКТ.

Легкие

Легкие обеспечивают устранение или уменьшение сдвигов КОС путем изменения объема альвеолярной вентиляции. Это достаточно мобильный механизм — уже через 1–2 мин после изменения объема альвеолярной вентиляции компенсируются или устраняются сдвиги КОС.

Причина изменения объема дыхания заключается в прямом или рефлекторном изменении возбудимости нейронов дыхательного центра.

Снижение рН в жидкостях организма (плазма крови, ликвор) является специфическим рефлекторным стимулом увеличения частоты и глубины дыхательных движений. Вследствие этого легкие выделяют избыток CO2 (образующийся при диссоциации угольной кислоты). В результате содержание H+ (HCO3 + H+ = H2CO3 ® H2O + CO2) в плазме крови и других жидкостях организма снижается.

Повышение рН в жидких средах организма снижает возбудимость инспираторных нейронов дыхательного центра. Это приводит к уменьшению альвеолярной вентиляции и выведению из организма CO2, т.е. к гиперкапнии. В связи с этим в жидких средах организма возрастает уровень угольной кислоты, диссоциирующей с образованием H+, — показатель рН снижается.

Следовательно, система внешнего дыхания довольно быстро (в течение нескольких минут) способна устранить или уменьшить сдвиги рН и предотвратить развитие ацидоза или алкалоза: увеличение вентиляции легких в 2 раза повышает рН крови примерно на 0,2; снижение вентиляции на 25% может уменьшить рН на 0,3‑0,4.

Почки

К главным механизмам уменьшения или устранения сдвигов КОС крови, реализуемых нефронами почек, относят ацидогенез, аммониогенез, секрецию фосфатов и K+,Na+-обменный механизм.

Ацидогенез. Этот энергозависимый процесс, протекающий в эпителии дистальных отделов нефрона и собирательных трубочек, обеспечивает секрецию в просвет канальцев H+ в обмен на реабсорбируемый Na+ (рис. 14-1).

Ы верстка! вставить рисунок «рис-14-1» Ы

Рис. 14-1. Реабсорбция HCO3‑ в клетках проксимального отдела. КА — карбоангидраза.

Ы верстка! вставить рисунок «рис-14-2» Ы

Рис. 14-2. Секреция H+ клетками канальцев и собирательных трубочек. КА — карбоангидраза.

Количество секретируемого H+ эквивалентно его количеству, попадающему в кровь с нелетучими кислотами и H2CO3. Реабсорбированный из просвета канальцев в плазму крови Na+ участвует в регенерации плазменной гидрокарбонатной буферной системы (рис. 14-2).

Аммониогенез, как и ацидогенез, реализует эпителий канальцев нефрона и собирательных трубочек. Аммониогенез осуществляется путем окислительного дезаминирования аминокислот, преимущественно (примерно 2/3) — глютаминовой, в меньшей мере — аланина, аспарагина, лейцина, гистидина. Образующийся при этом аммиак диффундирует в просвет канальцев. Там NH3+ присоединяет ион H+ с образованием иона аммония (NH4+). Ионы NH4+ замещают Na+ в солях и выделяются преимущественно в виде NH4Cl и (NH4)2SO4. В кровь при этом поступает эквивалентное количество гидрокарбоната натрия, обеспечивающего регенерацию гидрокарбонатной буферной системы.

Секреция фосфатов осуществляется эпителием дистальных канальцев при участии фосфатной буферной системы:

Na2HPO4 + H2CO3 Û NaH2PO4 + NaHCO3.

Образующийся гидрокарбонат натрия реабсорбируется в кровь и поддерживает гидрокарбонатный буфер, а NaH2PO4 выводится из организма с мочой.

Таким образом, секреция H+ эпителием канальцев при реализации 3 описанных выше механизмов (ацидогенеза, аммониогенеза, секреции фосфатов) сопряжена с образованием гидрокарбоната и поступлением его в плазму крови. Это обеспечивает постоянное поддержание одной из наиболее важных, емких и мобильных буферных систем — гидрокарбонатной и как следствие — эффективное устранение или уменьшение опасных для организма сдвигов КОС.

К+,Na+-обменный механизм, реализуемый в дистальных отделах нефрона и начальных участках собирательных трубочек, обеспечивает обмен Na+ первичной мочи на K+, выводящийся в нее эпителиальными клетками. Реабсорбированный Na+ в жидких средах организма участвует в регенерации гидрокарбонатной буферной системы. K+,Na+-обмен контролируется альдостероном. Кроме того, альдостерон регулирует (увеличивает) объем секреции и экскреции H+.

Таким образом, почечные механизмы устранения или уменьшения сдвигов КОС осуществляются путем экскреции H+ и восстановления резерва гидрокарбонатной буферной системы в жидких средах организма.

Печень

Печень играет существенную роль в компенсации сдвигов КОС. В ней действуют, с одной стороны, общие внутри- и внеклеточные буферные системы (гидрокарбонатная, белковая и др.), с другой стороны, в гепатоцитах осуществляются различные реакции метаболизма, имеющие прямое отношение к устранению расстройств КОС.

Синтез белков крови, входящих в белковую буферную систему. В печени образуются все альбумины, а также фибриноген, протромбин, проконвертин, проакцелерин, гепарин, ряд глобулинов и ферментов.

Образование аммиака, способного нейтрализовать кислоты как в самих гепатоцитах, так и в плазме крови и в межклеточной жидкости.

Синтез глюкозы из неуглеводных веществ — аминокислот, глицерина, лактата, пирувата. Включение этих органических нелетучих кислот при образовании глюкозы обеспечивает снижение их содержания в клетках и биологических жидкостях. Так, МК, которую многие органы и ткани не способны метаболизировать, в гепатоцитах примерно на 80% трансформируется в H2O и CO2, а оставшееся количество ресинтезируется в глюкозу. Таким образом, лактат превращается в нейтральные продукты.

Выведение из организма нелетучих кислот — глюкуроновой и серной при детоксикации продуктов метаболизма и ксенобиотиков.

Экскреция в кишечник кислых и основных веществ с желчью.

Желудок и кишечник

Желудок участвует в демпфировании сдвигов КОС, главным образом, путем изменения секреции соляной кислоты: при защелачивании жидких сред организма этот процесс тормозится, а при закислении — усиливается. Кишечник способствует уменьшению или устранению сдвигов КОС посредством:

Ú секреции кишечного сока, содержащего большое количество гидрокарбоната. При этом в плазму крови поступает H+;

Ú изменения количества всасываемой жидкости. Это способствует нормализации водного и электролитного баланса в клетках, во внеклеточной и других биологических жидкостях и как следствие — нормализации рН;

Ú реабсорбции компонентов буферных систем (Na+, K+, Ca2+, Cl, HCO3).

Поджелудочная железа способствует компенсации сдвигов КОС при помощи гидрокарбоната. Его секреция увеличивается при алкалозах и уменьшается в условиях ацидоза.

Виды расстройств кислотно-основного состояния

Расстройства КОС классифицируют по нескольким критериям (таблица 14-4).

Таблица 14-4. Виды нарушений кислотно-основного равновесия

Критерии Виды нарушений КОС
Направленность изменений [H+] и рН Ацидозы, алкалозы
Причины нарушения КОС Эндогенные, экзогенные
Степень компенсированности нарушений КОС Компенсированные, субкомпенсированные, некомпенсированные
Причины и механизмы развития нарушений КОС Газовые
Негазовые: Ú метаболические; Ú выделительные (почечные, желудочные, кишечные); Ú экзогенные; Ú смешанные (комбинированные)

Ацидоз и алкалоз





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 387 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2464 - | 2391 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.