Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Лекция 6. Уравнение Шредингера для частицы в потенциальной яме.

Уравнение Шредингера позволяет найти пси-функцию данного состояния и, следовательно, определить вероятность нахождения частицы в различных точках пространства. Для этого надо:

- записать уравнение Шредингера с учетом конкретного вида потенциальной энергии;

- решить уравнение Шредингера, т.е. найти собственные функции и собственные значения, удовлетворяющие начальным и граничным условиям.

Пусть частица движется вдоль оси X. При этом движение ограничено отрезком (0 ,l). В точках x = 0 и x = l установлены непроницаемые бесконечно высокие стенки. Потенциальная энергия в этом случае имеет вид

 

Такая зависимость потенциальной энергии от x получила название потенциальной ямы.

Запишем стационарное уравнение Шредингера

Поскольку пси-функция зависит только от координаты x, то уравнение упрощается следующим образом

Внутри потенциальной ямы U=0

За пределы потенциальной ямы частица попасть не может. Поэтому вероятность обнаружения частицы вне ямы равна нулю. Соответственно и пси-функция за пределами ямы равна нулю. Из условия непрерывности следует, что ψ должна быть равна нулю и на границах ямы, т.е.

.

Это граничное условие, которому должны удовлетворять решения уравнения.

Введем обозначение и получим уравнение, хорошо известное из теории колебаний

Решение такого уравнения имеет вид гармонической функции

Выбор соответствующих параметров k и α определяется граничными условиями, а именно,

n = 0 отпадает, т.к. в этом случае ψ = 0 и частица нигде не находится. Следовательно, число k принимает лишь определенные дискретные значения, удовлетворяющие условию

.

Отсюда следует очень важный результат. Найдем собственные значения энергии частиц

,

т.е. энергия электрона в потенциальной яме не произвольна, а принимает дискретные значения, т.е. является квантованной. Величина Еn зависит от целого числа n, которое принимает значение от 1 до ∞ и носит название главного квантового числа. Квантованные значения энергии называются энергетическими уровнями, а квантовое число n определяет номер энергетического уровня. Таким образом, электрон в потенциальной яме может находиться на определенном энергетическом уровне En. Причем минимальное значение энергии, соответствующее первому энергетическому уровню, отлично от нуля

.

Определим расстояние между соседними энергетическими уровнями

При больших m и l расстояние между уровнями становится мало, и спектр становится квазинепрерывным. Относительное расстояние между уровнями

при n → ∞,

т. е. спектр становится непрерывен. В этом заключается принцип соответствия Бора: при больших квантовых числах выводы и результаты квантовой механики должны соответствовать классическим результатам.

Вернемся к задаче определения собственных функций. После применения граничных условий имеем

Для нахождения коэффициента А воспользуемся условием нормировки

Значение интеграла равно l/2

Таким образом, собственные функции имеют вид

 

Графики собственных функций имеют вид

 

 

Окончательно сформулируем основные выводы:

1. Энергетический спектр частицы в потенциальной яме дискретный – энергия квантуется.

2. Минимальное значение кинетической энергии не может быть равно нулю.

3. Дискретный характер энергетических уровней проявляется при малых m,l и n, при больших m,l,n движение становится классическим.

4. Положения микрочастицы в яме не равновероятны, а определяются собственными функциями, в то время как в случае классической частицы все положения равновероятны.

 



<== предыдущая лекция | следующая лекция ==>
Вопрос 3. Особенности операторской деятельности | Неоклассические модели Р. Солоу
Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 645 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2574 - | 2263 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.