Лекции.Орг


Поиск:




Базовыми операциями алгебры логики




операции логического умножения – конъюнкции (),

логического сложения – дизъюнкции (),

исключающего или – (Å),

логического отрицания – инверсии ().

Таблицы истинности для указанных операций:

A B A V B A L B A Å B
         
         
         
         

 

4. Стрелка Пирса X ¯ Y.

Стрелка Пирса X ¯ Y (NOR (NOT OR), ИЛИ-НЕ) – это высказывание, которое истинно только в том случае, если X ложно и Y ложно.

5. Штрих Шеффера X | Y.

Штрих Шеффера X | Y (NAND (NOT AND), И-НЕ) – это высказывание, которое ложно только в том случае, если X истинно и Y истинно.

Определить значения логических операций при различных сочетаниях аргументов можно из таблицы истинности.

 

Таблица истинности для основных логических операций, используемых в ЭВМ

 

X Y XY X + Y X ¯ Y X | Y
             
             
             
             

 

Классификация ЭВМ

Компьютер – это электронное устройство для автоматизации процессов создания, хранения, воспроизведения, обработки и транспортировки данных.

Компьютер представляет собой комплекс аппаратного и программного обеспечения.

По принципу действия

В этом случае критерием является форма представления информации,
с которой они работают.

Цифровые ВМ – вычислительные машины дискретного действия; работают с информацией, представленной в дискретной, а точнее в цифровой форме.

 

Аналоговые ВМ - вычислительные машины непрерывного действия; работают с информацией, представленной в непрерывной (аналоговой) форме.

Решаемая задача (класс задач) жёстко определяется внутренним устройством АВМ и выполненными настройками (соединениями, установленными модулями, клапанами и т. п.). Даже для универсальных АВМ для решения новой задачи требовалась перестройка внутренней структуры устройства.

1622 год, английский математик-любитель Уильям Отред разработал первый вариант логарифмической линейки, устройство, которое можно считать первым аналоговым вычислительным прибором.

Почти все интерфейсы к реальному миру у нас аналоговые: микрофон, веб-камера, мышь. На пути от физических явлений (сдвинули мышь, произвели звук или включили свет) до зафиксированных компьютером сигнал проходит через АЦП — аналого-цифровой преобразователь, где аналоговый сигнал оцифровывается. В итоге мы «огрубляем» исходный сигнал до приемлемого уровня.

 

Задача будущего – сразу использовать информацию - распознавать или обрабатывать ее.

 

В 1928 г. Сергей Алексеевич Лебедев окончил Московское высшее техническое училище им. Н.Э. Баумана (МВТУ).

В 1945 г. С.А. Лебедев создал первую в стране электронную аналоговую вычислительную машину для решения систем обыкновенных дифференциальных уравнений.

По назначению

Универсальные, проблемно-ориентированные, специализированные.

 

По этапам создания

Разделение ЭВМ на поколения условно, так как поколения сменялись постепенно, поэтому временные границы между поколениями размыты. Поколения ЭВМ разделяют в зависимости от физических элементов или технологии их изготовления, используемые при построении ЭВМ. При сравнении быстродействия ЭВМ под операцией понимают операцию над числами с плавающей точкой.

 

 

Поколения ЭВМ

 

Поколение Элементная база процес-сора Макс. емкость ОЗУ, байт Макс. быстро-действие процес-сора, оп/с Основные языки програм-мирования Управление ЭВМ пользователем
Первое 1946-1954 электронные лампы 102 104 Машинный код Пульт управления и перфокарты
Второе 1958-1960 транзисторы 103 106 Ассемблер Перфокарты и перфоленты
Третье 1965-1968 ИС 104 107 Процедур-ные языки высокого уровня (ЯВУ) Алфавитно-цифровой терминал
Четвертое 1976-1979 БИС 105 108 Процедур-ные ЯВУ Монохромный или графический дисплей, клавиатура
Четвертое с 1985 СБИС микропроцессоры 107 109 Объектно-ориентированные ЯВУ Цветной графический дисплей, клавиатура, «мышь» и др.
Пятое усовершенст-вованные СБИС 108 1012 Языки логического программи-рования Цветной графический дисплей и устройства голосовой связи

 

Первое поколение ЭВМ (1951-1954) строилось на электронных лампах, которые могли быстро переключаться из одного состояния в другое. Лампы имели большие размеры, поэтому ЭВМ первого поколения, состоящие из десятков тысяч ламп, занимали целые этажи и были энергоемки. Программы записывались в ЭВМ с помощью установки перемычек на особом машинном коде.

Второе поколение ЭВМ (1958-1960) строилось на транзисторах – полупроводниковых приборах, которые могли находиться в одном из двух состояний. По сравнению с лампами транзисторы имели малые размеры и потребляемую мощность. Увеличение производительности обеспечивалось за счет более высокой скорости переключения и использованием обрабатывающих устройств, работающих параллельно. Площадь, требующаяся для размещения ЭВМ, уменьшилась до нескольких квадратных метров. Программы записывались на перфокарты – картонные карточки, на которых были выбиты или не выбиты дырочки, кодирующие 0 и 1. Программирование осуществлялось на языке Ассемблер, команды которого затем переводились в машинный код.

Третье поколение ЭВМ (1965-1968) строилось на интегральных схемах (ИС). ИС представляет собой электрическую цепь определенного функционального назначения, которая размещается на кремниевой основе. ИС содержит сотни и тысячи транзисторных элементов, что позволило уменьшить размеры, потребляемую мощность, стоимость и увеличить надежность системы. Помимо Ассемблера, программирование осуществлялось на языках высокого уровня (ЯВУ), имевших большое количество операторов. Каждый оператор объединял несколько команд языка Ассемблер.

Четвертое поколение ЭВМ (1976-по сегодняшний день) строилось на больших интегральных схемах (БИС), микропроцессоры. БИС содержат не набор нескольких логических элементов, из которых строились затем функциональные узлы компьютера, а целиком функциональные узлы. Примером БИС является микропроцессор. БИС способствовали появлению персональных компьютеров. Увеличение количества транзисторов до миллионов привело к появлению сверхбольших ИС (СБИС).

Пятое поколение ЭВМ существует в теории. Основное требование к ЭВМ – машина должна сама по поставленной цели составить план действий и выполнить его. Такой способ решения задачи называется логическим программированием. Элементная база процессора – СБИС с использованием опто- и криоэлектроники. Оптоэлектроника – раздел электроники, связанный с эффектами взаимодействия оптического излучения с электронами в веществах (главным образом в твердых телах) и использованием этих эффектов для генерации, передачи, хранения, обработки и отображения информации. Криоэлектроника (криогенная электроника) – область науки и техники, занимающаяся применением явлений, имеющих место в твердых телах при температуре ниже 120 К (криогенных температурах) в присутствии электрических, магнитных или электромагнитных полей (явление сверхпроводимости), для создания электронных приборов и устройств.

Широкомасштабная правительственная программа в Японии по развитию компьютерной индустрии и искусственного интеллекта была предпринята в 1980-е годы. Целью программы было создание «эпохального компьютера» с производительностью суперкомпьютера и мощными функциями искусственного интеллекта.[1]. Начало разработок — 1982, конец разработок — 1992, стоимость разработок — 57 млрд ¥ (порядка 500 млн $). Программа закончилась провалом, так как не опиралась на четкие научные методики, более того, даже её промежуточные цели оказались недостижимы в технологическом плане.

Первая ЭВМ – на электронных лампах (1946 г., США, ENIAC, вес – 30 тонн, 18 тыс. электронных ламп, мощность 140 кВт, размеры: 4 x 30 x 6 м, 5000 операций сложения/с, оперативная память – 600 бит, проработала почти 10 лет).

Первая отечественная ЭВМ - на электронных лампах (1950 г., СССР, МЭСМ, 5000 операций сложения/с, оперативная память – 1800 бит).

МЭСМ (Малая электронная счётная машина) — первая в СССР и континентальной Европе электронно-вычислительная машина. Разрабатывалась лабораторией С. А. Лебедева (на базе Киевского Института электротехники с конца 1948г.

Разработка БЭСМ-6 завершена в конце 1965 года. В1968 году начат выпуск в Москве.

Выдающийся советский разработчик В.С. Бурцев (1927-2005 гг.) в истории отечественной кибернетики считается главным конструктором первых в СССР суперкомпьютеров и вычислительных комплексов для систем управления реального времени.

В 1969 году была поставлена задача разработать вычислительную систему с производительностью 100 млн операций в секунду. Так появляется проект многопроцессорного вычислительного комплекса «Эльбрус».

Работа над последней машиной семейства, «Эльбрус-3» с быстродействием до 1 млрд. операций в секунду и 16 процессорами, была закончена в 1991 году. Но система оказалась слишком громоздкой (за счет элементной базы).

В 1968 году была принята государственная директива «Ряд», по которой дальнейшее развитие кибернетики СССР направлялось по пути клонирования компьютеров IBM S/360. Сергей Лебедев, остававшийся на тот момент ведущим инженером-электротехником страны, отзывался о «Ряде» скептически. По его мнению, путь копирования по определению являлся дорогой отстающих.

Результат работы центра — появление в 1971 году компьютеров серии ЕС.

Первый персональный компьютер (1976 г., фирма Apple, частота процессора 1 МГц, оперативная память – 48 Кбайт).

Персональный компьютер IBM – IBM PC/XT (1983 г., процессор Intel 8086, частота процессора 10 МГц, оперативная память – 640 Кбайт, НЖМД – 10 Мбайт, НГМД – 360 Кбайт).





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 394 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Даже страх смягчается привычкой. © Неизвестно
==> читать все изречения...

977 - | 843 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.