Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Сложное движение твердого тела




При сложении двух поступательных движений результирующее движение также является поступательным и скорость результирующего движения равна сумме скоростей составляющих движений. Сложение вращений тв. тела вокруг пересекающихся осей. Ось вращения, положение которой в пространстве изменяется со временем назыв. мгновенной осью вращения тела. Вектор угловой скорости – скользящий вектор, направленный вдоль мгновенной оси вращения. Абсолютная угловая скорость тела = геометрической сумме скоростей составляющих вращений – правило параллелограмма угловых скоростей.

. Если тело участвует одновременно в мгновенных вращениях вокруг нескольких осей, пересекающихся в одной точке, то

. При сферическом движении твердого тела, одна из точек которого во все время движения остается неподвижной, имеем уравнения сферического движения: Y=f1(t); q=f2(t); j=f3(t). Y – угол прецессии, q – угол нутации, j – угол собственного вращения — углы Эйлера. Угловая скорость прецессии , угл. Ско

 

рость нутации , угл. ск. собственного вращения . ,

– модуль угловой скорости тела вокруг мгновенной оси. Через проекции на неподвижные оси координат: – кинематические уравнения Эйлера. Сложение вращений вокруг 2-х параллельных осей.

1) Вращения направлены в одну сторону. w=w2+w1, С – мгновенный центр скоростей и через нее проходит мгновенная ось вращения, , . 2) Вращения направлены в разные стороны. , w=w2—w1

С – мгн. центр ск. и мгн. ось вращения, . Векторы угловых скоростей при вращении вокруг ||-ых осей складываются так же, как векторы параллельных сил. 3) Пара вращений – вращения вокруг ||-ных осей направлены в разные стороны и угловые скорости по модулю равны ( – пара угловых скоростей). В этом случае vA=vB, результирующее движение тела – поступательное (или мгновенное поступательное) движение со скоростью v=w1×AB – момент пары угловых скоростей (поступательное движение педали велосипеда относит-но рамы). Мгн. центр скоростей находится в бесконечности. Сложение поступательного и вращательного движений. 1) Скорость поступательного движения ^ к оси вращения – плоскопараллельное движение – мгновенное вращение вокруг оси Рр с угловой скоростью w=w'.

2) Винтовое движение – движение тела слагается из вращательного движения вокруг оси Аа с угл.ск. w и поступательного со скоростью v||Аа. Ось Аа – ось винта. Если v и w в одну сторону, то винт – правый, если в разные – левый. Расстояние, проходимое за время одного оборота любой точкой тела, лежащей на оси винта, наз. шагом винта – h. Если v и w постоянны, то h= =const, при постоянном шаге любая (×)М, не лежащая на оси винта описывает винтовую линию. направлена по касательной к винтовой линии.

3) Скорость поступательного движения образует произвольный угол с осью вращения, в этом случае движение можно рассматривать как слагающееся из серии мгновенных винтовых движений, вокруг непрерывно изменяющихся винтовых осей – мгновенно–винтовое движение.

 

 

Динамика

Динамика – раздел механики, в котором изучаются законы движения материальных тел под действием сил. Осн.законы механики (зак-ны Галилея-Нютона): закон инерции (1-ый закон): материальная точка сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока действие других тел не изменит это состояние; основной закон динамики (2-ой закон (Ньютона)): ускорение матер.точки пропорционально приложенной к ней силе и имеет одинаковое с ней направление ; закон равенства действия и противодействия (3-й закон (Ньютона)): всякому действию соответствует равное и противоположно направленное противодействие; закон независимости сил: несколько одновременно действующих на матер.точку сил сообщают точке такое ускорение, какое сообщила бы ей одна сила, равная их геометрической сумме. В классической механике масса движущегося тела принимается равной массе покоящегося тела, – мера инертности тела и его гравитационных свойств. Масса = весу тела, деленному на ускорение свободного падения.

m=G/g, g»9,81м/с2. g зависит от географической широты места и высоты над уровнем моря – не постоянная величина. Сила – 1Н (Ньютон) = 1кг×м/с2. Система отсчета, в которой проявляются 1-ый и 2-ой законы, назыв. инерциальной системой отсчета. Дифференциальные уравнения движения материальной точки: , в проекции на декартовы оси коорд.: , на оси естественного трехгранника: mat=åFit; man=åFin; mab=åFib (ab=0 – проекция ускорения на бинормаль), т.е. (r – радиус кривизны траектории в текущей точке). Вслучае плоского движения точки в полярных координатах: . Две основные задачи динамики: первая задача динамики – зная закон движения точки, определить действующую на нее силу; вторая задача динамики (основная) – зная действующие на точку силы, определить закон движения точки. – дифференциальное ур-ие прямолинейного движения точки. Дважды интегрируя его, находим общее решение x=f(t,C1,C2).

Постоянные интегрирования C1,C2 ищут из начальных условий: t=0, x=x0, =Vx=V0, x=f(t,x0,V0) – частное решение – закон движения точки.

Колебательное движение материальной точки. Восстанавливающая сила (сила упругости) Fx= – cx, сила стремится вернуть точку в равновесное положение, "с" – коэффициент жесткости пружины = силе упругости при деформации, равной единице [Н/м]. Свободные колебания ; обозначив c/m=k2, получаем – линейное однородное диффер-ное уравнение второго порядка, характеристическое уравнение: z2 + k2= 0, его корни мнимые, Þ общее решение дифф-ного уравнения будет x= C1coskt + C2sinkt, C1,C2 – постоянные интегрирования. Для их определения находим уравнение скоростей: = – kC1sinkt + kC2coskt, подставляем начальные условия в уравнения для х и , откуда С1= х0, С2= /k, т.е. x= х0coskt + ( /k)sinkt.

 

 

Можно обозначить С1=Аsinb, C2=Acosb Þ x=Asin(kt+b) – уравнение гармонических колебаний. А= –амплитуда, tgb=kx0/ , b – начальная фаза свободных колебаний; – циклическая частота (угловая, собственная) колебаний; период: Т=2p/k=2p , k и Т не зависят от начальных условий – изохронность колебаний; амплитуда и начальная фаза зависят о начальных условий. Под действием постоянной силы Р происходит смещение центра колебаний в сторону действия силы Р на величину статического отклонения dст=Р/с. Если Р – сила тяжести, то Т=2p .

Затухающие колебания при действии Rx= – b сила сопротивления, пропорциональная скорости (вязкое трение). , обозначив b/m=2n, получаем:

, характеристическое уравнение: z2 + 2nz + k2= 0, его корни:

z1,2= . а) При n<k корни мнимыеÞ общее решение дифф.ур-ия имеет вид: , обозначив С1=Аsinb, C2=Acosb Þ x=Ae-ntsin(kt+b). Множитель e-nt показывает, что колебания затухающие. График заключен между двумя симметричными относительно оси t кривыми x=±Ae-nt. Из начальных условий: , ; частота затухающих колебаний: k*= ; период: , период затухающих колебаний больше периода свободных колебаний (при небольших сопротивлениях Т*»Т). Амплитуды колебаний уменьшаются: – декремент колебаний; –nT*/2 логарифмический декремент; "n" – коэффициент затухания.

Б) Апериодическое движение точки при n ³ k или b ³ 2 . При n > k корни характеристич-ого ур-я вещественны, общее решение: , обозначая С1=(В12)/2, С2=(В12)/2, (ch, sh – гиперболические косинус и синус), если ввести В1= Аshb, В2= Аchb, то – это уравнение не колебательного движения (апериодического), т.к. гиперболический синус не является периодической функцией. При n = k корни характеристич. ур-я вещественны, равны и отрицательны: z1=z2= – n, общее решение: , или , движение также апериодическое.

 

 

Вынужденные колебания кроме восстанавливающей силы действует переменная возмущающая сила, обычно, по гармоническому закону: Q = Hsin(pt+d), р – частота возмущающей силы, d – начальная фаза. , h=Н/m, – дифференциальное уравнение вынужденных колебаний (неоднородное линейное дифф-ное ур-ие). Его общее решение = сумме общего решения однородного уравнения и частного решения данного уравнения:

х = х***. х*= C1coskt + C2sinkt, х**= Asin(рt+d) – частное решение ищется в виде подобном правой части уравнения. Подставляя решение в уравнение, находим , х = C1coskt + C2sinkt+ sin(рt+d). Величина статического отклонения: Аст= Н/с, – коэфф-нт динамичности, во скослько раз амплитуда колебаний превосходит статическое отклонение. При p=k m=¥ – явление резонанса (частота возмущающей силы равна частоте собственных колебаний, при этом амплитуда неограниченно возрастает). При p/k»1 наступает явление, называемое биениями: . Обозначая , получаем x=A(t)cos(pt+d) – происходит наложение дополнительных колебаний, вызванных возмущающей силой, на собственно вынужденные колебания – колебания частоты р, амплитуда которых является периодической функцией.

Явление резонанса возникает при совпадаении частот вынужденных и свободных кол-ний точки p=k. Диф-ное ур-ние: . Частное решение:

х**= Вtcos(kt+d), B=–h/(2k), т.е. общее решение диф-ного ур-ния: х = C1coskt + C2sinkt – –h/(2k)tcos(kt+d). Ур-ние показывает, что амплитуда вынужденных колебаний при резонансе возрастает пропорционально времени. Период

Т=2p/k, фаза вынужденных колебаний отстает от фазы возмущающей силы на p/2.

Вынужденные колебания при наличии вязкого трения: +Hsin(pt+d), , общее решение в зависимости от величины k и n:

1) при n<k ;

2) при n>k ;

3) при n=k .

 

 

Общие теоремы динамики точки

Теорема об изменении количества движения матер. точки. – количество движения материальной точки, – элементарный импульс силы. – элементарное изменение количества движения материальной точки равно элементарному импульсу силы, приложенной к этой точке (теорема в дифференц-ной форме) или – производная по времени от количества движения материальной точки равна равнодействующей сил, приложенных к этой точке. Проинтегрируем: – изменение количества движения материальной точки за конечный промежуток времени равно элементарному импульсу силы, приложенной к этой точке, за тот же промежуток времени. – импульс силы за промежуток времени [0,t]. В проекциях на оси координат: и т.д.

Теорема об изменении момента количества движения матер. точки. - момент количества движения матер. точки относительно центра О. – производная по времени от момента количества движения матер. точки относительно какого-либо центра равна моменту силы, приложенной к точке, относительно того же центра. Проектируя векторное равенство на оси координат. получаем три скалярных уравнения: и т.д. - производная от момента кол-ва движения матер. точки относительно какой-либо оси равна моменту силы, приложенной к точке, относительно той же оси. При действии центральной силы, проходящей через О, МО= 0, Þ =const. =const, где секторная скорость. Под действием центральной силы точка движется по плоской кривой с постоянной секторной скоростью, т.е. радиус-вектор точки описывает ("ометает") равные площади в любые равные промежутки времени (закон площадей) Этот закон имеет место при движении планет и спутников – один из законов Кеплера.

Работа силы. Мощность. Элементарная работа dA = Ftds, Ft – проекция силы на касательную к траектории, направленная в сторону перемещения, или dA = Fdscosa.

Если a – острый, то dA>0, тупой – <0, a=90o: dA=0. dA= – скалярное произведение вектора силы на вектор элементарного перемещения точки ее приложения; dA= Fxdx+Fydy+Fzdz – аналитическое выражение элементарной работы силы. Работа силы на любом конечном перемещении М0М1: . Если сила постоянна, то = F×s×cosa. Единицы работы:[1 Дж (джоуль) = 1 Нм].

 

 

, т.к. dx= dt и т.д., то .

Теорема о работе силы: Работа равнодействующей силы равна алгебраической сумме работ составляющих сил на том же перемещении А=А12+…+Аn.

Работа силы тяжести: , >0, если начальная точка выше конечной.

Работа силы упругости: –работа силы упругости равна половине произведения коэффициента жесткости на разность квадратов начального и конечного удлинений (или сжатий) пружины.

Работа силы трения: если сила трения const, то - всегда отрицательна, Fтр=fN, f – коэфф.трения, N – нормальная реакция поверхности.

Работа силы тяготения. Сила притяжения (тяготения): , из mg= , находим коэфф. k=gR2. – не зависит от траектории.

Мощность – величина, определяющая работу в единицу времени, . Если изменение работы происходит равномерно, то мощность постоянна: N=A/t. [1 Вт (ватт) =1 Дж/с, 1 кВт (киловатт) =

= 1000 Вт, 1л.с.(лошадиная сила) = 75 кгс×м/с = 736 Вт].

Теорема об изменении кинетической энергии точки. В диффер-ной форме: – полный дифференциал кинетической энергии мат.точки = элементарной работе всех действующих на точку сил. – кинетическая энергия матер.точки. В конечном виде: – изменение кинетической энергии мат.точки, при переходе ее из начального в конечное (текущее) положение равно сумме работ на этом перемещении всех сил, приложенных к точке.

Силовое поле – область, в каждой точке которой на помещенную в ней матер.точку действует сила, однозначно определенная по величине и направлению в любой момент времени, т.е. должно быть известна . Нестационарное силовое поле, если явно зависит от t, стационарное силовое поле, если сила не зависит от времени. Рассматриваются стационарные силовые поля, когда сила зависит только от положения точки: и Fx=Fx(x,y,z) и т.д. Свойства стационар. силовых полей:

1) Работа сил стац. поля зависит в общем случае от начального М1 и конечного М2 положений и траектории, но не зависит от закона движения матер. точки.

2) Имеет место равенство А2,1= – А1,2. Для нестационарных полей эти свойства на выполняются.

 

 

Примеры: поле силы тяжести, электростатическое поле, поле силы упругости.

Стационарные силовые поля, работа сил которых не зависит от траектории (пути) движения матер. точки и определяется только ее начальным и конечным положениями назыв. потенциальными (консервативными). , где I и II – любые пути, А1,2 – общее значение работы. В потенциальных силовых полях существует такая функция, однозначно зависящая от координат точек системы, через которую проекции силы на координатные оси в каждой точке поля выражаются так:

. Функция U=U(x1,y1,z1,x2,y2,z2,…xn,yn,zn) назыв. силовой функцией. Элементарная работа сил поля: dА=ådАi= dU. Если силовое поле является потенц-ным, элементарная работа сил в этом поле равна полному дифференциалу силовой функции. Работа сил на конечном перемещении , т.е. работа сил в потенц-ном поле равна разности значений силовой функции в конечном и начальном положениях и не зависит о формы траектории. На замкнутом перемещении работа равна 0. Потенциальная энергия П равна сумме работ сил потенциального поля на перемещении системы из данного положения в нулевое. В нулевом положении П0= 0. П=П(x1,y1,z1,x2,y2,z2,…xn,yn,zn). Работа сил поля на перемещении системы из 1-го положения во 2-ое равна разности потенциальных энергий А1,2= П1– П2. Эквипотенциальные поверхности – поверхности равного потенциала. Сила направлена по нормали к эквипотенциальной поверхности. Потенциальная энергия системы отличается от силовой функции, взятой со знаком минус, на постоянную величину U0: А1,0= П =U0 – U. Потенциальная энергия поля силы тяжести: П= mgz. Потенц.энерг.поля центральных сил. Центральная сила – сила, которая в любой точке пространства направлена по прямой, проходящей через некоторую точку (центр), и модуль ее зависит только от расстояния r точки массой m до центра: , . Центральной является гравитационная сила ,

, f = 6,67×10-11м3/(кгс2) – постоянная тяготения. Первая космическая скорость v1= » 7,9 км/с, R = 6,37×106м – радиус Земли; тело выходит на круговую орбиту. Вторая космическая скорость: v11= » 11,2 км/с, траектория тела парабола, при v >v11– гипербола. Потенц. энергия восстанавливающей силы пружин:

, l – модуль приращения длины пружины. Работа восстанавливающей силы пружины: , l1 и l2 – деформации, соответствующие начальной и конечной точкам пути.

 

 





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 504 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

2272 - | 2124 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.