Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Семей, разделенных по группам и составам




 

Для исследования соотношения между потребительскими расходами и распределяемым доходом используются перекрестные данные о семейных бюджетах, относящиеся к некоторому фиксированному периоду времени. Прогноз строится с использованием обобщенного метода наименьших квадратов Гольдбергера[5]. Обозначим через Y величину потребительских расходов, а через X объем распределяемого дохода. Соберем данные о бюджете 10000 семей и образуем пары соответствующих измерений для величин Хi Yi(i = 1, 2,..., 10000). Предположим, что мы уже разделили семьи на группы по их размеру и составу и рассматриваем интересующую нас связь между Y и Xвнутри конкретной группы. Мы не ожидаем, что у всех семей этой группы, имеющих один и тот же доход X', будут одинаковые потребительские расходы Y'. Одни потратят больше других, а некоторые, наоборот, меньше, однако мы надеемся, что величины расходов сгруппируются вокруг некоторого значения, соответствующего тому объему дохода, о котором идет речь. Эта идея находит свое формальное воплощение в новой гипотезе о характере линейной зависимости:

(1)

Здесь символом U обозначена переменная, принимающая то положительные, то отрицательные значения. Таким образом, если мы рассмотрим подгруппу семей, располагающих доходом X', то центральным значением их потребительских расходов окажется величина а + bХ', в то время как реальные объемы потребления для семей данной подгруппы будут равны а + bХ' +U1, а + bХ'+ U2 и т.д., где U1, U2, ... измеряют отклонения потребительских расходов каждой отдельной семьи от центрального значения а + bХ'.

Существует три способа рационального объяснения включения в уравнение (1) стохастического члена, причем любое из этих объяснений не исключает других.

Во-первых, мы можем предположить, что потребительские расходы для всех и каждой из рассматриваемых семей были бы полностью объяснены, если бы мы знали все факторы, влияющие на эти расходы, и располагали необходимыми данными. Одинаковые по размеру и составу семьи могут отличаться возрастом родителей и детей, сложившейся динамикой дохода (возрастает он или убывает), бережливостью членов семьи и т.д. Многие из этих факторов не измеряются количественно, не квантуются и даже если такое измерение достижимо, то получение всех необходимых данных на практике оказывается невозможным.

Поскольку среди многочисленных факторов, влияющих на потребительский спрос конкретной семьи, многие действуют в противоположных направлениях, можно рассчитывать, что малые значения U, будут встречаться чаще, чем большие. Мы подошли, таким образом, к пониманию U как случайной переменной, обладающей вероятностным распределением с нулевым средним и с конечной дисперсией. Это позволяет нам обращаться с переменной U как со стохастическим возмущением (ошибкой). Ввиду того, что U включает много факторов, которые, по-видимому, можно считать независимыми, обращение к центральной предельной теореме показывает нам выбор для U нормального распределения.

Вторым оправданием присутствия в экономических соотношениях возмущающего члена служит то обстоятельство, что только с его помощью можно отразить вечный и непредсказуемый элемент случайности человеческих реакций, сплошь и рядом оказывающий воздействие на суммарный эффект существенных факторов и поэтому непосредственно влияющий на наблюдаемые значения переменной Y.

Третьим источником ошибок являются ошибки наблюдения или измерения.

Итак, пусть существует линейное соотношение между переменной Y, k -1,объясняющими переменными Х2, Х3..... Xk ивозмущением U. Если мы имеем выборку из п наблюдений над переменными Y и Xj, j = 2, 3,..., k, то можно записать

Коэффициенты bи параметры распределения Uнеизвестны. Уравнения, соответствующие всем п наблюдениям, могут быть записаны компактно в матричной форме

(2)

где

Соглашение, в силу которого через Xki обозначается i наблюдение переменной Xk, означает, что индексы в матрице X расположены в порядке, обратном общепринятому, когда первый индекс — номер строки, второй — номер столбца.

Примем простую гипотезу о нулевом значении математического ожидания стохастического возмущения U: E[U]= 0 и введем матрицу V:

где UT вектор-строка, полученная транспонированием вектора-столбца U.

По диагонали матрицы V расположены дисперсии элементов вектора U, остальные элементы — ковариации элементов вектора U:

Задача прогноза состоит в предсказании изолированного значения зависимой переменной для заданного вектора-строки Х0. Мы можем записать:

где U 0 — истинное, но неизвестное значение возмущения в прогнозируемый момент. Пусть

где W — вектор размерности (n´1) прогнозируемого возмущения вектором выборочных возмущений. Сформулируем линейный прогноз:

Р = CTY, (7)

где С — вектор размерности ( n´1), состоящий из п констант.

Чтобы значение Р было наилучшим прогнозом, необходимо выбрать вектор С, минимизирующий дисперсию прогноза:

Для определения ошибки прогноза вычтем из уравнения (7) уравнение (3); подставим в результат значение Y из (2) и, выполнив соответствующие преобразования, получим:

Из условия несмещенности прогноза следует, что вектор С должен удовлетворять равенству:

(9)

Тогда для ошибки прогноза имеем P – Y0 = CTU - U0, и, поскольку (Р – Y0) — скаляр, дисперсия прогноза равна

(10)

 

Чтобы минимизировать (10) при условии (9), образуем функцию

где L — вектор размерности (k´l), образованный множителями Лаг-ранжа. Затем продифференцируем Ф по векторам С и L и приравняем вектор частных производных к нулевому вектору.

Рассмотрим

Учитывая, что V — симметричная матрица, то есть для I ¹ j:

Возьмем частные производные по элементам вектора С:

За исключением множителя 2, правые части этих уравнений содержат элементы матричного произведения V С, которые образуют n-мерный вектор-столбец. Следовательно,

Аналогично получаем:

В результате дифференцирования имеем:

(11) (12)

Примем вектор частных производных равным нулевому вектору и получим систему:

которая может быть записана в виде

(13)

Из (13)получаем:

Применив правило отыскания матрицы, обратной к матрице, подвергшейся разбиению, имеем:

(14)

где Н = (-ХТ V-1Х)-1

Из (14)получаем:

(15)

где I - единичная матрица.

Следовательно, наилучшим нелинейным несмещенным прогнозом будет:

Учитывая, что e=(Y - XB) — вектор остатков, соответствующий методу наименьших квадратов,

Р = Х0В+ WTV-1e. (16)

Это и есть основной результат, полученный Гольдбергером для предсказания с помощью обобщенной модели наименьших квадратов.

Задача. Исследовать уровень ежемесячного среднедушевого потребления товаров первой необходимости и сделать прогноз этого уровня на будущее для семей со средним уровнем достатка.

Имеются данные среднемесячных затрат на питание по основным группам продуктов (распределяемый доход) и общих затрат на товары первой необходимости в выбранной группе семей в сопоставимых денежных единицах за 5 лет. Общая сумма затрат на товары первой необходимости включает, кроме затрат на указанные группы продуктов, затраты на фрукты, кондитерские изделия, а также непродовольственные товары повседневного спроса (мыло, газеты и т.п.).

Оценить необходимые затраты на эти товары при сохранении установившегося рациона питания, если цены на преобладающие продукты питания (колонки 2, 3, 4, 5) увеличатся в 1,5 раза по сравнению с последним годом.

Период времени (годы)     Затраты на мясные продукты (в мес.)   Затраты на молочные продукты (в мес.)   Затраты на оно щи (в мес.)     Затраты на мучные и крупяные изделия (в мес.) Общие затраты на товары первой необходимости (в мес.)  
  9,5 3,7 4,5 6,5 5,5  

Решение. В качестве математической модели зависимости общих затрат на товары первой необходимости от цен на основные продукты питания возьмем линейное соотношение (2). На основе данных задачи сформируем матрицы X, Y, Х0:

(17)

Х0 =(1 22,5 9 16,5 12).

Вычислим определитель квадратной матрицы X

det X= | X|= 2,9.

Так как detX ¹ 0, матрица X является невырожденной и, следовательно, для нее существует единственная обратная матрица Х -1и уравнение (15) может быть упрощено раскрытием скобок:

А это означает, что прогнозируемое значение среднемесячных затрат на основные продукты питания в следующем году может быть вычислено по формуле:

(18)

Для вычисления матрицы, обратной к X, воспользуемся известной теоремой. Совместное преобразование матриц Х и Е (единичной) будем осуществлять таким образом, чтобы врезультате каждого шага один из векторов матрицы X становился единичным.

Для преобразования k- говектора матрицы Х кединичному пересчет элементов матрицы X осуществляется по следующим формулам:

где i— номер строки;. J — номер столбца; верхним индексом * отмечены пересчитанные изданном шаге значения.

Элементы xkk каждого последующего шага выделены жирным шрифтом.

 

 

                   
  9,5 3,7 6,5            
    4,5   5,5          
                   
                   
                   
  0,5 0,7 0,5   -1        
    1,5   3,5 -1        
          - 1        
          - 1        
    -9,6 -3 -16   -18      
    1,4     -2        
    0,1   1,5   -2      
    -2,2   -2   -6      
    -5,4 -1 -6   -12      
    -16,2   -22   -36      
    3,6     -7     -1  
    4,5   5,5 -9     -2  
    -2,2   -2   -6      
    -7,6   -8   -18      
    4,7     -10 13,5   0,25 -2,75
    -0,2       -1   -0,5 0,5
    - 0,725       -2,375   -1,3125 0,6875
    -0,3       -1,5   0,75 -0,25
    0,95     -2 2,25   -0,125 -0,125

 

Во избежание накопления ошибок округления последний шаг выполним в простых дробях. Тогда левая матрица станет единичной, правая после вынесения за знак матрицы общего для всех элементов множителя элемента примет вид:

(19)

В соответствии со значениями переменных (17) и (19),

Р = X0X -1 Y= 157,0775862 = 157.

Ответ: Прогнозируемые затраты на продукты первой необходимости составят 157 денежных единиц.

 





Поделиться с друзьями:


Дата добавления: 2016-11-23; Мы поможем в написании ваших работ!; просмотров: 353 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2856 - | 2722 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.014 с.