Приклад 2. Обчислити визначник
Обчислювальна таблиця
N п/п | сума | Конт- роль | |||||
-2 | |||||||
-2 | |||||||
-2 | |||||||
-16 | -1 | -11 | -20 | -20 | |||
-6 | -8 | -8 | -8 | -8 | |||
-8 | -9 | -23 | -26 | -26 | |||
-240 | -256 | -80 | -576 | -576 | |||
-176 | |||||||
-160 | |||||||
73 472 | -5 120 | 68 352 | 68 352 | ||||
73 216 | -56 320 | 168 896 | 168 896 | ||||
-3 763 077 120 | -3 763 077 120 | -3 763 077 120 |
Приклади
Обчислити визначники:
. .
. .
Відповіді:
Матриці. Означення. Види матриць
Означення 1. Матрицею розміру називається прямокутна таблиця, складена із чисел вигляду , розміщених в рядках і стовпцях, яка позначається
Скорочено пишуть . Зустрічаються також позначення
числа називаються елементами матриці.
Означення 2. Дві матриці А і В однакових розмірів називаються рівними тоді і тільки тоді, коли рівні їх відповідні елементи, . Позначається
Розглянемо основні види матриць.
Нульовою називається матриця розміру , всі елементи якої дорівнюють нулю.
Квадратною називається матриця, в якої кількість рядків дорівнює кількості стовпців . У цьому випадку говорять, що матриця має порядок (замість розміру ).
Діагональною називається така квадратна матриця, в якої елементи головної діагоналі відмінні від нуля, а всі решта елементів дорівнюють нулю, позначається
Діагональна матриця, в якої всі діагональні елементи дорівнюють одиниці, називається одиничною матрицею, і позначається
Матриця що складається з одного стовпця називається матрицею-стовпцем
.
Аналогічно, матриця-рядок складається з одного рядка
Звернемо увагу, що ряд факторів пов’язаних з поняттям матриці для багатьох так чи інакше могли бути відомими ще до знайомства з самим терміном.
Розглянемо приклади.
Приклад 1. Відомість на отримання стипендії для 20 студентів є прикладом матриці розміром 20х1, елементами якої є розмір стипендії кожному.
Приклад 2. У відомості на зарплату бригаді для 15 робітників можуть бути вказані суми: нарахована, утримана і до оплати. Дані цієї відомості теж представляють матрицю розміру 15х3.
Приклад 3. При виконанні робіт в шахті (метро, тунелі) по проходці можна виділити два основних види робіт: виїмка породи (сюди входить буріння шпурів, заряжання, зривання, прибирання породи) і кріплення. Обидва види робіт при сталій площі поперечного перетину можуть вимірюватись в погонних метрах. Припустимо, що протягом доби кожна із трьох змін добилися таких результатів:
Зміни | Виїмка (в м) | Кріплення (в м) |
І-а зміна | ||
ІІ-а зміна | ||
ІІІ-я зміна |
Ці результати можна записати у вигляді матриці розміром 3х2:
Лінійні дії над матрицями
Іноді в роботі з таблицями (матрицями) прикладів типу 1–3 із 1.8., доводиться виконувати над ними певні операції. Так, якщо в прикладі 1 потрібно підрахувати заплановий розмір стипендій за семестр (6 місяців), то очевидно необхідно кожний елемент цієї матриці помножити на 6. Виникає необхідність множити матрицю на число.
Якщо в умовах прикладу 2 ми маємо відомості 3-х місяців одного квартала, то можна скласти зведену відомість за квартал, додаючи розміщені у відповідних графах дані стосовно кожного робітника.
Приходимо до дії додавання матриць.
Якщо в умовах прикладу 3, 1.8. позначити через і – результати роботи 3-х змін за першу і другу добу відповідно, то можна знайти сумарні результати за дві доби додаванням відповідних елементів і позначити це
Отже з прикладів бачимо, що цілком природно виникає необхідність дій множення матриці на число і додавання матриць.
Означення 1. Добутком числа на матрицю розміру називається нова матриця того ж розміру, кожний елемент якої дорівнює відповідному елементу матриці помноженному на число , тобто
Матриця (–1) – протилежна матриці , і позначається .
Дія додавання вводиться тільки для матриць одного і того ж розміру.
Означення 2. Сумою двох матриць і розміру називається матриця того ж розміру, кожний елемент якої дорівнює сумі відповідних елементів матриць–доданків, тобто , і позначається .
Якщо ж , то — різниця матриць.
Дії додавання, віднімання і множення матриць на число називаються лінійними діями над матрицями.
Можна перевірити, що вони мають такі властивості:
Тут позначено через 0 – нульову матрицю і — протилежну матриці .
Вправа. Перевірити властивості 1–8 для матриць
і чисел .
Приклад. Задані матриці
, .
Знайти 1) ; 2) .
Розв’язання. 1)
.
2) .
Множення матриць
Множення матриць розглянемо, починаючи з відомого вже прикладу 3, при підрахунку грошових затрат на виконання робіт по проходці в шахті (метро, тунелі). Нехай в рядках матриці
записані результати роботи за добу кожної із трьох змін: по виїмці породи (перший стовпець) і по кріпленню пройденої виробки (другий стовпець). Як вже згадувалось, при заданій площі поперечного перетину проходки результати робіт можуть вимірюватись в пройденних погонних метрах. Замовнику необхідно знати, яку суму грошей прийдеться виділяти на оплату праці робітників, а яку – на капітальні витрати. Існують норми розцінок на зарплату і капітальні витрати, які представимо у вигляді матриці розцінок
де перший стовпець – норми оплати праці робітників: за 1 погонний метр по виїмці породи і за 1 погонний метр по кріпленню відповідно. Другий стовпець: – відповідні капітальні затрати за 1 погонний метр виїмки і за 1 погонний метр кріплення.
Загальні затрати на зарплату для кожної із змін дорівнюють сумі добутків пройдених кількостей метрів по обох видах робіт на відповідні норми розцінок. Позначимо через сумму грошей зароблену -ю зміною . Аналогічно підраховуються капітальні затрати для -ої зміни по виїмці і кріпленню.
Отримаємо таблицю затрат
Зміни | Затрати на зарплату по виїмці і кріпленню | Капітальні затрати по виїмці і кріпленню |
І-а зміна | ||
ІІ-а зміна | ||
ІІІ-я зміна |
Ці дані запишемо у вигляді нової матриці затрат , що отримана з матриць і за допомогою операції, яку називають множенням матриць, і позначають
Для множення матриці розміру на матрицю розміру необхідна їх узгодженність, тобто, щоб число стовпців матриці (першого співмножника) збігалося з числом рядків матриці (другого співмножника). Так в наведеному прикладі матриця узгоджується з матрицею (для кожного виду робіт є норми розцінок). Однак матриця не є узгодженою з матрицею .
Означення 1. Добутком матриці розміру на матрицю розміру називається матриця розміру , елементи якої дорівнюють сумі добутків елементів -того рядка матриці на відповідні елементи -того стовпця матриці , тобто
.
Із структури елементів зрозуміло необхідність узгодженості матриць і : кожному елементу в -тому рядку матриці (першого співмножника) повинен відповідати елемент в -тому стовпці матриці (другого співмножника). Число рядків матриці дорівнює числу рядків першого співмножника, а число стовпців- числу стовпців другого співмножника.
Приклад 1. Знайти добуток матриць і , якщо , .
Розв’язання. Матриця має розмір 2х2, розмір матриці - 2х3. Число стовпців матриці дорівнює 2 і збігається з числом рядків матриці . Отже, матриці узгоджені, тому можна множити матрицю на матрицю . В результаті отримаємо матрицю розміром 2х3, тобто
.
Приклад 2. Переконатись, що для даних матриць
Звернути увагу, що в даному випадку .
Приклад 3. Переконатись, що для даних матриць
Звернути увагу, що добуток двох ненульових матриць може давати нульову матрицю, і, крім того, .