Денатурация
Денатурация ДНК осуществляется при действии химических факторов (мочевина, гуанидинхлорид, кислота, щелочь) и физических факторов (температура). В результате денатурации происходит разрушение вторичной структуры ДНК. При снятии воздействия де-натурирующего фактора вторичная структура ДНК может быть вос-становлена. Это процесс носит название – ренатурация:
При высоких температурах происходит денатурация, или плавление, ДНК. Этот процесс сопровождается увеличением оптической плотности растворов ДНК при длине волны 260 нм. Данное явление получило название – гиперхромный эффект. Максимальное повышение оптической плотности раствора ДНК при полном распаде ее до мононуклеотидов при указанной длине волны приблизительно равно 80 %.
Важнейшей характеристикой ДНК является ее температура плавления, которая соответствует той температуре, при которой увеличение оптической плотности раствора ДНК равна половине макси-мального ее увеличения, наблюдаемого при полной денатурации ДНК.
При охлаждении раствора ДНК (отжиге) может происходить восстановление исходной вторичной структуры ДНК в соответствии с принципом комплементарности. Если смесь различных молекул ДНК вначале расплавить, а затем провести их отжиг, то при наличии сходства в их первичных структурах между молекулами ДНК возможна гибридизация.
Чем выше сходство между молекулами ДНК, тем выше степень гибридизации. На основании результатов гибридизации между ДНК различных видов живых организмов можно судить о их родстве. Чем 18 выше степень гибридизации, тем ближе родство между анализируемыми видами. Гибридизация также возможна и между молекулами ДНК и РНК, при условии наличия гомологичных нуклеотидных последовательностей.
Строение и свойства РНК
Нить РНК – это последовательность рибонуклеотидов, соединенных в одну цепь. РНК имеет линейную структуру молекулы с огромным числом входящих в нее составляющих элементов. Рибонуклеотиды соединены так, что образуют неразветвленную нить большой длины.
Углеводный компонент РНК представлен рибозой. Так как рибоза относится к классу пентоз, то с этим было связано и первоначальное название РНК – пентозонуклеиновые кислоты. Но такое название не закрепилось в терминологии, так как пентозы – это широкий класс соединений, а рибоза является всего лишь их частным случаем. В РНК же содержится из всего класса пентоз только рибоза.
Азотистыми основаниями РНК являются аденин и гуании из класса пуриновых оснований и цитозин и урацил из класса пиримидиновых оснований.
Отличительной особенностью РНК от ДНК является то, что для нее не характерно устойчивое спиральное строение.
Структура РНК определяется последовательностью рибонуклеотидов. Эта последовательность рибонуклеотидов в цепи называется первичной структурой РНК. Первичная структура строго специфична и уникальна для каждого вида РНК. Первичная структура РНК представляет собой своеобразную запись биологической информации, закодированную в РНК определенным набором рибонуклеотидов, и определяет вторичную структуру, которая проявляется в закручивании нити РНК в спираль. Третичная структура также определяется первичной структурой и представляет собой пространственное расположение всей молекулы РНК. Третичная структура включает вторичную структуру и те фрагменты полинуклеотидной цепи, которые соединяют один участок вторичной структуры с другим. Это взаиморасположение и связь фрагментов РНК.
Вторичная и третичная структуры РНК формируются преимущественно за счет водородных связей и гидрофобных взаимодействий между азотистыми рибонуклеиновыми основаниями. Молекулы гидрофобного вещества воздействуют силами электронного притяжения на молекулы углеводородов. От количества и расположения водородных связей и контактов гидрофобного взаимодействия зависит пространственное расположение (конфигурация) всей молекулы рибонуклеиновой кислоты.
Выделяют три вида РНК, различающиеся по величине молекул и выполняемым функциям, — информационную (иРНК), рибосомальную (рРНК) и транспортную (тРНК).
Три вида РНК
РНК | Число нуклеотидов в молекуле |
Информационные | До 30000 |
Рибосомные | До 6000 |
Транспортные | До 100 |
Информационная РНК (и-РНК) располагается в ядре и цитоплазме клетки, имеет самую длинную полинуклеотидную цепь среди РНК и выполняет функцию переноса наследственной информации из ядра в цитоплазму клетки.
Транспортная РНК (т-РНК) также содержится в ядре и цитоплазме клет-ки, ее цепь имеет наиболее сложную структуру, а также является самой короткой (75 нуклеотидов). Т-РНК доставляет аминокислоты к рибосомам в процессе трансляции — биосинтеза белка.
Рибосомальная РНК (р-РНК) содержится в ядрышке и рибосомах клетки, имеет цепь средней длины. Все виды РНК образуются в процессе транскрипции соответствующих генов ДНК.