Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Преобразование чисел, выражающих длину, массу, стоимость и ДР.




Этот вид работы с большим трудом усваивается учащимися школы VIII вида. Одна из трудностей состоит в том, что ученики с трудом понимают, каким образом одна и та же величина может иметь различную числовую характеристику, т. е., например, как может быть, что длина класса 7 м, 70 дм, 700 см. Числа разные, но они характеризуют одну и ту же величину — длину класса.

Другая трудность возникает при выполнении преобразований: 5 р. = 500 к., 200 см=2 м (название более крупной меры ставится рядом с меньшим числом).

При выполнении преобразований, как показывают опыт и спе­циально проведенные исследования, учащиеся чаще всего допуска­ют такие ошибки:

1)при замене крупных мер мелкими: 4 км 85 м=485 м (пропущен
нуль); 78 м 5 дм = 7805 дм (вставлен лишний нуль);
35 р. 7 к.=3570 к. (нуль стоит не на месте); 35 км 386 м=35 386 км;
3 кг 85 г=3085 км (неверно записано наименование); 4 р. 70 к.=470
(результат не имеет наименования);

2)при замене мелких мер крупными: 28 746 к.=28 р. 746 к.;
8050 г=80 кг 50 г или 805 кг 0 г (неумение вычленить из числа
нужные разряды); 387 м=3 кг 87 м, 2308 кг=2 р. 308 к.=23 р.
08 к. (неправильная запись наименований); 785 ц=7 кг 85 ц


(нарушение порядка наименований); 280 кмх2=5600 кв. м=5(> и (случайная запись наименований).

Одной из причин взаимозаменяемости наименований этих мер является отрыв их от конкретного образа, а также сходство и звучании.

Поэтому полезны такие задания: отмерить полоску длиной 10 см, а затем определить длину этой же полоски в дециметрах, Значит, длина этой полоски равна 1 дм, или 10 см, т. е. в этом случае происходит замена крупных мер более мелкими. Наоборот, можно записать, что длина полоски равна 10 см, или 1 дм, т. е произвести замену мелких мер более крупными.

Надо найти длину карандаша в сантиметрах (14 см), а потом в дециметрах и сантиметрах (1 дм 4 см). 14 см содержит 1 десяток сантиметров, или 1 дм и еще 4 см. Опираясь на равенство отрез­ков, записываем: 14 см=1 дм 4 см, а 1 дм 4 см=14 см, т. е. мелкие меры заменили крупными, а крупные — мелкими.

Также путем сравнения отрезков учеников обучают замене миллиметров сантиметрами и наоборот. Например, предлагается найти длину гвоздя в сантиметрах, а получившийся остаток (мень­ше сантиметра) в миллиметрах. Получаются два числа: 1 см 5 мм и 15 мм, которые характеризуют одну и ту же величину. Значит, 1 см 5 мм=15 мм. Полезно давать задания и такого типа: найти величину (длину) двумя единицами измерения, а затем одной и сравнить результаты.

Чтобы выполнить эти преобразования, учащиеся должны уметь умножать 10, 100, 1000, а также делить на 10, 100, 1000 как без остатка, так и с остатком (соотношение мер, изучаемых во вспо­могательной школе, связано с числами 10, 100, 1000); уметь при­вести примеры чисел, полученных при измерении величин с соот­ношением единиц, равным либо 10, либо 100, либо 1000, напри­мер: 3 см 5 мм, 8р. 15 к., 3 км 859 м и т. д.

Последовательность изучения преобразований чисел, получен­ных от измерения величин, связана с последовательностью изуче­ния нумерации целых неотрицательных чисел и действий над ними.

Знакомство с преобразованием чисел начинается с замены крупных мер мелкими (5-й класс). Прежде всего надо создать такую ситуацию, в которой учащиеся могли бы убедиться в необ­ходимости этого преобразования.

 


Например, ученику предлагается измерить полоску в децимет-||.|.\; отрезать от нее полоску длиной в 4 см и ответить на вопро-и,1. какой длины полоска осталась? Какой длины полоска была? (I дм.) Сколько сантиметров отрезали? (4 см.) Запись дается икая: 1 дм — 4 см. Надо 1 дм заменить 10 см.

Далее проводятся специальные упражнения, например:

5 р. =... к.

2 дм=... см

1 дм=10 см

10 смх2=20 см

2 дм=20 см

В приведенных примерах крупные меры заменялись (выража­лись) мелкими.

Параллельно с этим преобразованием учитель показывает, как число, полученное от измерения в мелких мерах, выразить в крупных мерах.

Объяснение

1 десяток миллиметров составляет 1 см. Сколько десятков в числе 20? В числе 20 содержится 2 десятка (20:10=2). Значит, 20 мм — это 2 см.

На данном этапе полезно провести сопоставление с разрядны­ми единицами:

100 ед. = 1 сот. 100 к. = 1 р. 200 ед.=2 сот. 200 к.=2 р. 800 ед.=8 сот. 800 к.=8 р.

Чтобы узнать, сколько рублей содержится в данном числе, надо число копеек разделить по 100 к.

Далее рассматриваются более трудные случаи. Например, надо 5 см 6 мм выразить в миллиметрах. Так как в 1 см содержится 10 мм, то 5 см будет в 5 раз больше. 10 мм-5=50 мм, затем 50 мм+6 мм=56 мм, значит, 5 см 6 мм=56 мм.

Обратная задача: выразить число в более крупных единицах измерения, например 56 мм надо выразить в сантиметрах и мил­лиметрах. Вспомним, что 10 мм=1 см. Далее учитель спрашивает: «Сколько десятков в числе 56?» (В числе 56 содержится 5 десят­ков, или 5 см. Значит. 56 мм=5 см 6 мм.)


 
 

Особое внимание следует обратить на запись чисел, получен! от измерения, с пропущенными разрядами, например таких: 3 р. ' В связи с этим примером необходимо вспомнить, что в 1 р. содерж; ся 100 к., в 3 р. — 300 к. в результате устанавливается, что в чи< 3 р. 7 к. пропущен разряд десятков (7 к. — это единицы) и вме> пропущенного разряда следует вписывать нуль: 3 р. 07 к. Такая пись предотвратит возможные, часто встречающиеся оши(н (3 р. 7 к.=37 к.) при замене крупных мер мелкими и при выполнении действий (3 р. 7 к.+4 р. 8 к.=8 р. 5 к.).

Следует сопоставить запись многозначных чисел и чисел, полу ченных от измерения величин такого вида: 3 р. 07 к. и 30/. 5 кг 056 г и 5056, 8 т 005 кг и 8005, 10 250 и 10 тыс. 250 ел. 10 250 м и 10 км 250 м.

Полезны такие задания:

Сколько всего единиц тысяч в числе 27 245?

Вставь пропущенные числа: 45 ед. =... дес.... ед., 45 см = =... дм... см.

Замени мелкие меры крупными: 475 к. =... р.... к. 3745 к. =..., 185 см =..., 3075 г=...

Вставь пропущенные числа: 10 м 45 см=... см, 3 т 405 кг=... кг. Сравни числа (вставь знаки >, <, =): 4500 м... 4 км 50 м, 7 т 5 ц... 7 т 500 кг, 3800 к.... 380 р.

Поставь нужные наименования: 1... =1000..., 1... = 100....





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 492 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

2513 - | 2360 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.