Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Сопротивление воздухоносных путей




 

Воздух проходит через трубку (рис. 17.20), если между ее концами существует перепад давлений. От его величины зависят скорость и особенности воздушного потока. При низких скоростях линии течения могут быть параллельны стенкам трубки (А). Это так называемый ламинарный режим. По мере возрастания скорости потока он становится все менее однородным, особенно в местах ветвления трубки, где разделение воздушных струй может происходить с образованием местных завихрений (Б). Наконец, при очень высоких скоростях линии течения полностью теряют упорядочность, и поток называется в этом случае турбулентным (В).

Уравнение, связывающее давление и расход (т. е. объемную скорость) при ламинарном потоке было впервые выведено французским врачом Пуазейлем. Для прямых трубок с круглым сечением оно записывается следующим образом:

j*#

 

 

Рис. 17.20. Типы воздушного потока в трубках.

а — ламинарный поток; б — переходный тип (с завихрениями в области ветвлений); в — турбулентный поток. Аэродинамическое сопротивление равно отношению перепада давлений (Р1—Р2) к расходу

 

 

где V — расход флюида, Р — давление, создающее поток (ΔР см. на рис. 17.20), r — радиус трубки, η — вязкость флюида, l — длина трубки. Из уравнения видно, что давление пропорционально расходу (Р = KV). Поскольку сопротивления потоку R равно давлению, деленному на расход, можно записать:

 

Как видно, большую роль играет радиус трубки; когда он уменьшается вдвое, сопротивление потоку увеличивается в 16 раз.

Важно также, что на взаимоотношение между давлением и расходом влияет вязкость, а не плотность флюида.

Одна из особенностей полностью развитого ламинарного потока заключается в том, что частицы газа в центре трубки передвигаются со скоростью, в два раза превышающей среднюю (см. рис. 17.20).

Особенности турбулентного потока совершенно иные. Давление в этом случае пропорционально уже не расходу флюида, а примерно квадрату расхода (Р = KV2). Вязкость при таком режиме не играет существенной роли, а увеличение плотности флюида при данном расходе повышает перепад давлений.

Будет поток ламинарным или турбулентным, в значительной степени зависит от так называемого числа Рейнольдса (Re), получаемого по уравнению:

где d — плотность флюида, v — средняя линейная скорость, r — радиус трубки, η — вязкость флюида. В прямых гладких трубках турбулентность возможна при числе Рейнольдса больше 2000.

Применить все эти закономерности к такой сложной системе трубок, как бронхиальное дерево — со всеми его разветвлениями, изменениями диаметра и неровными стенками —трудно. Практически особенности потока очень сильно зависят от «входных» характеристик трубки. Если у какой-либо развилки возникает завихрение, воздушная струя как бы «тянет» его за собой, и оно исчезает лишь на определенном расстоянии от места зарождения. Поскольку же бронхиальное дерево постоянно ветвится, можно полагать, что истинный ламинарный поток (см. рис. 17.20) возникает лишь в самых мелких воздухоносных путях, где число Рейнольдса очень мало (в конечных бронхиолах оно может составлять около 1). На остальных участках течение носит переходный характер (Б). Турбулентный поток может наблюдаться в трахее, особенно при физической нагрузке, когда скорость воздуха возрастает. В целом для расчета «перепада» давления в бронхиальном дереве следует использовать как первую, так и вторую степень расхода воздуха:

P=K1V+K2V2.

Сопротивление воздухоносных путей можно рассчитать, разделив разность давления в ротовой полости и альвеолах на расход воздуха (см. рис. 17.20). В ротовой полости давление легко измеряется с помощью манометра, а в альвеолах его можно оценить с помощью общего плетизмографа.

Сопротивление воздухоносных путей равно отношению разности давлений между альвеолами и ротовой полостью к расходу воздуха (см. рис. 17.20). Его можно измерить методом общей плетизмографии (рис. 17.21). Перед тем, как обследуемый делает вдох (А), давление в плетизмографической камере равно атмосферному. Во время вдоха давление в альвеолах снижается, а объем альвеолярного воздуха увеличивается на величину Δ V. При этом воздух в камере снижается и по изменению его давления можно рассчитать Δ V (см. рис. 17.22).

 

Рис. 17.21. Измерение сопротивления воздухоносных путей с помощью общей плетизмографии. Во время вдоха альвеолярный воздух расширяется, и давление в камере увеличивается. По этому увеличению можно рассчитать внутриальвеолярное давление. Разделив разницу между давлением в альвеолах и полости рта на расход воздуха, можно получить сопротивление воздухоносных путей (по J. Comrol, 1965)

Р1 V1 = Р2 (V1 - Δ V),

где Р1 и Р2 — давление в камере соответственно до попытки вдохнуть и во время нее, V1 — объем камеры до этой попытки, а Δ V — изменение объема камеры (или легких). Отсюда можно рассчитать Δ V. Если объем легких известен, можно перейти от Δ V к внутриальвеолярному давлению, используя закон Бойля-Мариотта (Р3V2 = P4(V2 + Δ V), где Р3 и Р4 — давление в полости рта соответственно до попытки вдохнуть и во время нее, a V2 — ФОЕ, которая и рассчитывается по этой формуле).

Одновременно измеряется расход воздуха, что дает возможность рассчитывать сопротивление воздухоносных путей. Такие же измерения проводятся при выдохе. Способ определения объема легких приведен на рис. 17.22.

Сопротивление воздухоносных путей можно рассчитать и при спокойном дыхании, измерив внутриплевральное давление с помощью введенного в пищевод катетера (см. рис. 17.19). Однако при этом результаты будут включать также сопротивление тканей. Внутриплевральное давление определяется с одной стороны силами, противодействующими эластической тяге легких, а с другой — силами, преодолевающими сопротивление воздухоносных путей и тканей.

 

Рис. 17.22. Измерение ФОЕ с помощью общей плетизмографии. Когда обследуемый пытается сделать вдох при перекрытых воздухоносных путях, объем его легких несколько увеличивается, давление в дыхательных путях снижается, а давление в камере повышается. Отсюда, используя закон Бойля—Мариотта, можно рассчитать объем легких

 

При движении легких и грудной клетки необходимо прикладывать некоторое давление для преодоления вязких сил, действующих в тканях при их деформации. Именно наличием таких сил частично объясняется заштрихованная область кривой на рис. 17.19. Однако у молодых здоровых людей сопротивление тканей составляет лишь около 20% общего (т. е. суммы сопротивления тканей и воздухоносных путей), хотя при некоторых заболеваниях оно может увеличиваться.

Для того, чтобы при дыхании происходили движения легких и грудной клетки, необходимо затрачивать работу. В данном случае ее удобнее всего измерять произведением давления на объем.

Работу, затрачиваемую на движение легких можно оценить по кривой «давление—объем» (рис. 17.23). При вдохе внутриплевральное давление изменяется в соответствии с кривой АБВ и на движение легких затрачивается работа, соответствующая площади ОАБВГО. Трапеция ОАДВГО отражает работу, необходимую для преодоления упругих сил, а заштрихованный участок АБВДА — работу, затраченную на преодоление вязкого сопротивления воздухоносных путей и тканей (см. рис. 17.19). Чем выше сопротивление воздухоносных путей или расход воздуха при вдохе, тем более отрицательным будет внутриплевральное давление, тем больше сместится вправо (в сторону отрицательных величин) точка Б по сравнению с точкой Д и тем больше будет площадь заштрихованного участка.

Рис. 17.23. Кривая «давление—объем» для легких. Работа, необходимая для преодоления упругих сил при вдохе соответствует трапеции ОАДВГО, а работа по преодолению вязких сил — заштрихованному участку АБВДА

 

Работе, необходимой для преодоления сопротивления воздухоносных путей (и тканей) при выдохе, соответствует участок АДВЕА. В нормальных условиях он «вписан» в трапецию ОАДВГО, т. е. работа по преодолению вязких сил может быть совершена за счет энергии, запасенной в упругих структурах и высвобождающейся при пассивном выдохе. Разница между площадями АДВЕА и ОАДВГО соответствует энергии, рассеивающейся в виде тепла.

Чем выше частота дыхания и расход воздуха, тем больше площадь участка АБВДА (т. е. работа по преодолению вязких сил). С другой стороны, чем больше дыхательный объем (ДО), тем больше площадь трапеции ОАДВГО (т. е. работа по преодолению упругих сил).

Больные со сниженной растяжимостью легких (пневмосклероз, эмфизема и др.) как правило, дышат чаще и дыхание поверхностное; а при обструкции дыхательных путей — дыхание медленное. В обоих случаях это способствует уменьшению затрачиваемой работы.

При выполнении тяжелой физической работы, при занятиях спортом, особенно циклическими видами спорта (академическая гребля, плавание, лыжные гонки, стайерский бег и др.) происходит увеличение затрачиваемой работы, и затраты увеличиваются, если спортсмен тренируется в неблагоприятных климатических условиях (среднегорье, зоны с жарким и влажным климатом и т. п.).

Общую работу, затрачиваемую на движение легких и грудной клетки, измерить трудно, хотя некоторые ее оценки были получены при искусственной вентиляции в респираторе типа «искусственные легкие». Такую работу можно рассчитать так же, измеряя затраты кислорода на дыхание и учитывая коэффициент полезного действия (КПД):

 

Полагают, что этот коэффициент составляет около 5—10%.

Затраты кислорода на спокойное дыхание исключительно малы — менее 5% от общего потребления О2. При произвольной гипервентиляции они могут увеличиваться до 30%. У спортсменов во время физической работы (тренировки или соревнования) поглощение кислорода дыхательными мышцами увеличивается и тем самым дыхательная мускулатура является лимитирующим фактором в выполнении физической работы (нагрузки).

Работа, необходимая для преодоления эластического сопротивления легких и грудной стенки, как полагают, не зависит от времени. Максимум работы производится тогда, когда дыхательный объем также максимален. Эту форму сопротивления можно вычислить, определив давление, необходимое для измерения объема легких и грудной клетки. Эта величина называется растяжимостью (С).

где ΔV — изменение объема, а ΔР — изменение давления.

Общую растяжимость легкого и грудной стенки можно определить, составив график, выражающий внутрилегочное давление, необходимое для поддержания в легком известного объема газа. Экспериментально это производится путем наполнения легких неким объемом, расслабления всех дыхательных мышц и измерения давления во рту (при закрытых ноздрях). Растяжимость легкого равна величине внутриплеврального давления и может быть определена таким же образом (рис. 17.24).

Рис. 17.24. Общее давление (Р0), создаваемое суммой эластических свойств грудной клетки гр) и легких (Рл) на разных уровнях расширения груди (%ЖЕ). Наклон кривых соответствует растяжимости. Обратите внимание на то, что конечный дыхательный объем в покое (V n) приходится на точку, где отрицательное (Р гр) равно положительному (Р л). При изменении эластических свойств легкого или грудной клетки (Vn) должно сместиться. Любой другой объем кроме Vn, требует напряжения мышц для создания нужной силы (Р 0)

 

Установлено, что от 3/4 до 7/8 общего эластического сопротивления создается поверхностным натяжением пленки жидкости, выстилающий внутреннюю поверхность альвеолы, а остальная часть — эластическими свойствами ткани. Чем выше поверхностное натяжение, тем больше нужно энергии для преодоления его сопротивления. Поверхностное натяжение снижается за счет сурфактанта. Как полагают, сурфактант стабилизирует легочные альвеолы, так что они не спадаются при выдохе.

Показано, что сопротивление воздушному потоку создается главным образом в бронхах среднего размера (рис. 17.25). На основании уравнения Пуазейля следовало бы ожидать, что местом наибольшего сопротивления будут самые мелкие бронхиолы, но на самом деле это не так. Воздушные пути с диаметром меньше 2 мм создают менее 20% измеренного сопротивления воздушному потоку. Обилие мелких воздушных путей создает большое суммарное поперечное сечение для воздушного потока. Для очень малого объема легких описано явление «закрытого воздухоносного пути», т. е. обратимого спадения мелких бронхиол. В таких условиях некоторое количество энергии затрачивается при вдохе на открывание спавшихся бронхиол. Сопротивление воздушному потоку зависит от времени; оно наибольшее при частом дыхании и достигает максимума, даже если объем вдоха не максимален.

 

Рис. 17.25. Сопротивление в разных частях воздухоносных путей.

Обратите внимание на то, что сопротивление выше всего в крупных бронхах, а самое низкое — в мелких бронхиолах

 

Работа по перемещению грудной клетки и легкого против сопротивления неэластичных тканей тоже зависит от времени. У взрослых мужчин она составляет около 20% общего расхода энергии при дыхании.

Общую работу, затрачиваемую на перемещение воздуха в легкое и из него, включая движение грудной клетки, можно вычислить по графику «давление—объем» (рис. 17.26):

 

Рис. 17.26. Схема зависимости между давлением и объемом при одном дыхательном объеме (сплошная линия, направленная в сторону возрастающих значений, обозначает вдох; сплошная линия, направленная в сторону снижения объема, обозначает выдох). Суммированные площади А и Б соответствуют общей работе эластических компонентов, совершаемой при вдохе. Площадь Б соответствует всей работе неэластических компонентов, производимой при вдохе, то есть работе ткани и воздушной струи. Площадь Б соответствует работе, совершаемой неэластическими компонентами при выдохе

 

Эта работа складывается из работы против эластических сил (см. рис. 17.26) и против неэластических (см. рис. 17.26). Для данного минутного объема существует интенсивность работы, при которой сумма эластического и зависимого от времени неэластического компонентов минимальна (рис. 17.27). При нормальном дыхании для перемещения воздуха в легкие и из них требуется менее 5% общего потребления кислорода (рис. 17.28).

Рис. 17.27. Гипотетическая кривая работы эластических и неэластических компонентов и суммарной работы, производимой при равной частоте дыхания у человека при постоянном минутном объеме. Обратите внимание на оптимальную частоту, когда общая сумма работы эластических (I) и неэластических (II) компонентов дает минимум общей необходимой работы. Работа выражена в количестве потребляемого О2 (V02)

 

Рис. 17.28. Потребление кислорода дыхательными мышцами при разной

частоте дыхания в норме и при пониженной растяжимости легких

(эмфизема)

 

Чем интенсивнее физическая работа, тем выше потребление кислорода дыхательной мускулатурой.

J.M. Petit и др. (1962) установили зависимость между КПД и частотой дыхания у человека. Авторы регистрировали ЭМГ диафрагмы и прямой мышцы живота и сделали вывод, что при медленном и глубоком дыхании возникает дискоординация мышц-антагонистов, а при учащенном дыхании их функционирование было более согласованным. Именно этим фактором они объясняют увеличение КПД по мере учащения дыхания.

А.В. Otis (1950) предложил определить механическую мощность дыхания при помощи следующего уравнения:

W = K1V2+K2V3,

где W — механическая мощность внешнего дыхания (Вт); V — минутный объем дыхания; К1 и К2 константы.

Первая часть уравнения характеризует мощность, необходимую для преодоления эластического сопротивления легких и грудной клетки плюс ламинарного сопротивления воздушного потока в дыхательных путях; вторая часть — мощность, необходимую для преодоления турбулентного сопротивления потока воздуха в дыхательных путях. У человека в покое и при легкой физической работе с величинами МОД, не превышающими 30 л, механическая мощность внешнего дыхания составляет 0,04—0,31 Вт, однако при величине МОД 120—125 л эта мощность достигает 6,97—8,37 Вт.

При увеличении МОД на 25 л по отношению к состоянию покоя (8—12л) кислородная стоимость дыхания увеличивается и на каждый литр вентиляции затрачивается дополнительно 1 мл кислорода (О2), а при возрастании МОД на 50—80 л — соответственно 2,0— 3,2 мл О2. Если величина МОД превышает 100 мл, на работу дыхательной мускулатуры затрачивается более 1 л О2. Если МОД превышает 150 л, то кислородная стоимость дыхания составляет около 4,5 л. R.J. Shepard (1966) считает, что уровень МОД в 120 л — это критическая граница, выше которой энергетическая стоимость работы аппарата внешнего дыхания становится особенно высокой.

Изменения объема легких

 

Объем легкого меняется при вдохе не всюду одинаково. Для этого имеются три главные причины. Во-первых, грудная полость во всех направлениях увеличивается неравномерно. Во-вторых, не все части легкого одинаково растяжимы. В-третьих, предполагается существование гравитационного эффекта, который способствует смещению легкого книзу (рис. 17.29).

Рис. 17.29. Объем части легкого, способный к расширению, то есть жизненная емкость части (ЖЕч). Верхушка легкого показана в левой части графика ФОЕ — функциональная остаточная емкость

 

Объем воздуха, вдыхаемый при обычном (неусиленном) вдохе и выдыхаемый при обычном (неусиленном) выдохе, называется дыхательным воздухом. Объем максимального выдоха после предшествовавшего максимального вдоха называется жизненной емкостью легких (ЖЕЛ). Она не равна всему объему воздуха в легком (общему объему легкого), поскольку легкие полностью не спадаются. Объем воздуха, который остается в неспавшихся легких, называется остаточным воздухом. Имеется дополнительный объем, который можно вдохнуть при максимальном усилии после нормального вдоха. А тот воздух, который выдыхается максимальным усилием после нормального выдоха, это резервный объем выдоха. Функциональная остаточная емкость состоит из резервного объема выдоха и остаточного объема. Это тот находящийся в легких воздух, в котором разбавляется нормальный дыхательный воздух. Вследствие этого состав газа в легких после одного дыхательного движения обычно резко не меняется.

Минутный объем (V) — это воздух, вдыхаемый за одну минуту. Его можно вычислить, умножив средний дыхательный объем (V1) на число дыханий в минуту (f), или V = fVt. Часть Vt, например, воздух в трахее и бронхах до конечных бронхиол и в неперфузируемых альвеолах, не участвует в газообмене, так как не приходит в соприкосновение с активным легочным кровотоком — это так называемое мертвое пространство (Vd). Часть Vt которая участвует в газообмене с легочной кровью, называется альвеолярным объемом (Va). С физиологической точки зрения альвеолярная вентиляция (Уо) — наиболее существенная часть наружного дыхания Va = f(VtVd), так как она является тем объемом вдыхаемого за минуту воздуха, который обменивается газами с кровью легочных капилляров.

Вентиляция легких

 

Вентиляция легких зависит от дыхательного объема (ДО) и частоты дыхания. Объем воздуха, который могут вместить легкие при максимально глубоком вдохе, называется общей емкостью легких (ОЕЛ). Тот объем, который человек может выдохнуть после максимального вдоха, составляет жизненную емкость легких (ЖЕЛ). Нормальная глубина дыхания, свойственная отдельному человеку в состоянии покоя, называется дыхательным объемом (ДО) и составляет около 10% ОЕЛ или 15—18% ЖЕЛ. Произведение дыхательного объема на число дыханий составляет минутный объем дыхания (МОД). Эта величина зависит прежде всего от уровня метаболизма, массы тела (веса), возраста, и в условиях покоя у взрослого человека может колебаться в широких пределах от 3 до 10 л.

На рис. 17.30 схематично представлены легочные объемы человека. Вверху большая диаграмма показывает четыре первичных легочных объема и их примерную величину. Внешний круг указывает наибольший объем, до которого могут быть растянуты легкие; внутренний круг (остаточный объем) ограничивает объем, оставшийся после того, как весь воздух изгнан из легких (при самостоятельном дыхании). Вокруг центральной диаграммы расположены более мелкие; затушеванные области на них означают четыре емкости легких. Объем газа мертвого пространства включен в остаточный объем, функциональную остаточную емкость и общую емкость легких, как это имеет место при измерении обычными методами. Внизу представлены легочные объемы так, как они получаются на спирограмме; затушеванные участки соответствуют центральной диаграмме в верхней части рисунка.

Из общего количества воздуха, вдыхаемого в нормальных условиях человеком, около 150 мл не попадает в альвеолы и распределяется в верхних дыхательных путях — глотке, гортани, трахее и бронхах — в так называемом мертвом пространстве (МП) и, следовательно, не участвует в газообмене.

Различают анатомическое и физиологическое мертвое пространство. Объем анатомического мертвого пространства можно вычислить по формуле:

 

ОМП (мл) = масса тела (кг) х 2,22.

 

В обычных условиях величина анатомического МП довольно постоянна.

 

Рис. 17.30. Легочные объемы

 

В процессе дыхания не весь вдыхаемый воздух достигает альвеол и участвует в газообмене; поэтому возникает необходимость введения еще одного понятия — минутной альвеолярной вентиляции (МАВ). У взрослого человека МАВ составляет в среднем 2,5— 5 л/мин. Зависимость между минутным объемом дыхания (МОД) и минутной альвеолярной вентиляцией может быть выражена формулами:

 

МАВ = МОД — ОМП • ЧД или МАВ = (ДО — ОМП) • ЧД

 

Поскольку МАВ определяет газообмен, уменьшение доли ее в МОД будет приводить к ухудшению газообмена и наоборот. При одном и том же МОД увеличение частоты дыхания (ЧД) приводит к снижению МАВ и, следовательно, к ухудшению газообмена. На рис. 17.31 показано, что один и тот же МОД (8000 мл) может быть получен при разной частоте дыхания (и, конечно, при разном ДО). Но если при нормальной ЧД и нормальном ДО доля альвеолярной вентиляции в МОД достаточно высока и составляет 5600 мл (см. рис. 17.31, б), то при тахипноэ МАВ снижается до 3200 мл, а доля объема, не участвующего в газообмене, увеличивается (см. 17.31, а). Это влечет за собой ухудшение газообмена и увеличение цены дыхания.

Важным элементом адекватной спонтанной вентиляции легких здорового и больного организмов является синхронная деятельность межреберных дыхательных мышц и диафрагмы в активной фазе дыхательного цикла, т. е. в период вдоха, обеспечивающая максимальное увеличение емкости грудной полости в этот период. В ряде случаев наблюдается расстройство такой синхронизации в результате действия различных факторов. Такая синхронизированная деятельность дыхательных мышц и диафрагмы называется «наружным парадоксальным дыханием». Во всех случаях при парадоксальном дыхании возникают существенные нарушения газообмена, приводящие к гипоксии и гиперкапнии. На рис. 17.32 представлены возможные варианты такого нарушения вентиляции легких.

 

Рис. 17.31. Влияние изменений дыхательного объема и частоты дыхания на альвеолярную вентиляцию

Рис. 17.32. Схема, иллюстрирующая «наружное парадоксальное дыхание»: а, б — взаимоотношение реберного каркаса грудной клетки и диафрагмы в момент нормального выдоха и вдоха; в — реберное дыхание;

г — диафрагмальное дыхание





Поделиться с друзьями:


Дата добавления: 2016-11-23; Мы поможем в написании ваших работ!; просмотров: 398 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лаской почти всегда добьешься больше, чем грубой силой. © Неизвестно
==> читать все изречения...

2355 - | 2220 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.