Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Принцип изучения в развитии.




Исторический и логический подходы в познании

Принцип изучения объектов в их развитии является одним из важнейших принципов диалектического метода познания. В этом состоит одно из принципиальных отличий диалектического метода от метафизического. Только изучив прошлое интересующего нас объекта, историю его возникновения и формирования, можно понять его нынешнее состояние, а также предсказать его будущее.

Принцип изучения объекта в развитии может реализоваться в познании двумя подходами: историческим и логическим (или, точнее сказать, логико-историческим).

При историческом подходе история объекта воспроизводится в точности, во всей ее многогранности, с учетом всех деталей, событий, включая и всякого рода случайные отклонения, «зигзаги» в развитии. Такой подход применяется при подробном, доскональном изучении человеческой истории, при наблюдениях, например, за развитием каких–то растений, живых организмов (с соответствующими описаниями этих наблюдений во всех подробностях) и т.д.

При логическом подходе также воспроизводится история объекта, но при этом она подвергается определенным логическим преобразованиям: обрабатывается теоретическим мышлением с выделением общего, существенного и освобождается в то же время от всего случайного, несущественного, наносного, мешающего выявлению закономерности развития изучаемого объекта. Такой подход в естествознании XIX века был успешно (хотя и стихийно) реализован Ч.Дарвиным. У него впервые логический процесс познания органического мира исходил из исторического процесса развития этого мира, что позволило научно решить вопрос о возникновении и эволюции видов растений и животных.

Выбор того или иного – исторического или логического – подхода в познании обусловливается природой изучаемого объекта, целями исследования и другими обстоятельствами. В то же время в реальном процессе познания оба указанных подхода тесно взаимосвязаны. Исторический подход не обходится без какого–то логического осмысления фактов истории развития изучаемого объекта. Логический же анализ развития объекта не противоречит его подлинной истории, исходит из нее.

Логико-исторический подход, опирающийся на мощь теоретического мышления, позволяет исследователю достичь логически реконструированного, обобщенного отражения исторического развития изучаемого объекта. А это ведет к получению важных научных результатов.

 

Общенаучные методы эмпирического познания.

Научное наблюдение

Наблюдение есть чувственное (преимущественно – визуальное) отражение предметов и явлений внешнего мира. Это – исходный метод эмпирического познания, позволяющий получить некоторую первичную информацию об объектах окружающей действительности.

Научное наблюдение (в отличие от обыденных, повседневных наблюдений) характеризуется рядом особенностей:

- целенаправленностью (наблюдение должно вестись для решения поставленной задачи исследования, а внимание наблюдателя фиксироваться только на явлениях, связанных с этой задачей);

- планомерностью (наблюдение должно проводиться строго по плану, составленному исходя из задачи исследования);

- активностью (исследователь должен активно искать, выделять нужные ему моменты в наблюдаемом явлении, привлекая для этого свои знания и опыт, используя различные технические средства наблюдения).

Научное наблюдение всегда сопровождаются описанием объекта познания, в котором фиксируются свойства, стороны изучаемого объекта, составляющие предмет исследования. Описания результатов наблюдений образуют эмпирический базис науки, опираясь на который исследователи создают эмпирические обобщения, сравнивают изучаемые объекты по тем или иным параметрам, проводят классификацию их по каким–то свойствам, характеристикам, выясняют последовательность этапов их становления и развития.

Наблюдение как метод познания более или менее удовлетворяло потребности наук, находившихся на описательно–эмпирической ступени развития. Дальнейший прогресс научного познания был, однако, связан с переходом многих наук к следующей, более высокой ступени развития, на которой наблюдения дополнялись экспериментальными исследованиями, предполагающими целенаправленное воздействие на изучаемые объекты.

Что касается наблюдений, то в них отсутствует деятельность, направленная на преобразование, изменение объектов познания. Это обусловливается рядом обстоятельств: недоступностью этих объектов для практического воздействия (например, наблюдение удаленных космических объектов), нежелательностью, исходя из целей исследования, вмешательства в наблюдаемый процесс (психологические и др. наблюдения), отсутствием технических, энергетических, финансовых и иных возможностей постановки экспериментальных исследований объектов познания.

По способу проведения наблюдения могут быть непосредственными и опосредованными.

При непосредственных наблюдениях те или иные свойства, стороны объекта отражаются, воспринимаются органами чувств человека. Такого рода наблюдения дали немало полезного в истории науки. Известно, например, что наблюдения положения планет и звезд на небе, проводившиеся в течение более двадцати лет Тихо Браге с непревзойденной для невооруженного глаза точностью, явились эмпирической основой для открытия Кеплером его знаменитых законов.

В настоящее время непосредственное визуальное наблюдение широко используется в космических исследованиях, как важный (а иногда и незаменимый) метод научного познания. Визуальные наблюдения с борта пилотируемой орбитальной станции – наиболее простой и весьма эффективный метод исследования параметров атмосферы, поверхности суши и океана из космоса в видимом диапазоне.

Хотя непосредственное наблюдение продолжает играть немаловажную роль в современной науке, однако чаще всего научное наблюдение бывает опосредованным, т.е. проводится с использованием тех или иных технических средств. Появление и развитие таких средств во многом определило то громадное расширение возможностей метода наблюдений, которое произошло за последние четыре столетия.

Если, например, до начала XVII в. астрономы наблюдали за небесными телами невооруженным глазом, то создание Галилеем в 1608 году оптического телескопа подняло астрономические наблюдения на новую, гораздо более высокую ступень. А появление в наши дни рентгеновских телескопов и вывод их в космическое пространство на борту орбитальной станции (рентгеновские телескопы могут работать только за пределами земной атмосферы) позволило проводить наблюдения за такими объектами Вселенной (пульсары, квазары), которые никаким другим путем изучать было бы невозможно.

Подобно развитию технических средств дальних наблюдений, создание в XVII веке оптического микроскопа, а много позднее, уже в ХХ веке, и электронного микроскопа позволило исследователям наблюдать удивительный мир микрообъектов и микроявлений.

Развитие современного естествознания связано с повышением роли так называемых косвенных наблюдений. Например, объекты и явления, изучаемые ядерной физикой, не могут прямо наблюдаться ни с помощью органов чувств человека, ни с помощью самых совершенных приборов. То, что ученые наблюдают в процессе эмпирических исследований в атомной физике, – это не сами микрообъекты, а только результаты их воздействия на определенные объекты, являющиеся техническими средствами исследования. Например, при изучении свойств заряженных частиц с помощью камеры Вильсона эти частицы воспринимаются исследователем косвенно – по таким видимым их проявлениям, как образование треков, состоящих из множества капелек жидкости.

Косвенные наблюдения обязательно основываются на некоторых теоретических положениях, устанавливающих определенную связь (скажем, в виде математически выраженной функциональной зависимости) между наблюдаемыми и ненаблюдаемыми явлениями. Подчеркивая роль теории в процессе таких наблюдений, А.Эйнштейн в разговоре с В.Гейзенбергом заметил: «Можно ли наблюдать данное явление или нет – зависит от вашей теории. Именно теория должна установить, что можно наблюдать, а что нельзя».[55]

Вообще любые научные наблюдения, хотя они опираются в первую очередь на работу органов чувств, требуют в то же время участия и теоретического мышления. Исследователь, опираясь на свои знания, опыт, должен осознать чувственные восприятия и выразить их (описать) либо в понятиях обычного языка, либо – более строго и сокращенно – в определенных научных терминах, в каких–то графиках, таблицах, рисунках и т.п.

Из всего вышесказанного следует, что наблюдение является весьма важным методом эмпирического познания, обеспечивающим сбор обширной информации об окружающем мире. Как показывает история науки, при правильном использовании этого метода он оказывается весьма плодотворным.

 

Эксперимент

Эксперимент – более сложный метод эмпирического познания по сравнению с наблюдением. Он предполагает активное, целенаправленное и строго контролируемое воздействие исследователя на изучаемый объект для выявления и изучения тех или иных его сторон, свойств, связей. При этом экспериментатор может преобразовывать исследуемый объект, создавать искусственные условия его изучения, вмешиваться в естественное течение процессов.

Эксперимент включает в себя другие методы эмпирического исследования (наблюдения, измерения). В то же время он обладает рядом важных, присущих только ему особенностей.

Во-первых, эксперимент позволяет изучать объект в «чистом» виде, т.е. устранять всякого рода побочные факторы, наслоения, затрудняющие процесс исследования. Например, проведение некоторых экспериментов требует специально оборудованных помещений, защищенных (экранированных) от внешних электромагнитных воздействий на изучаемый объект.

Во-вторых, в ходе эксперимента объект может быть поставлен в некоторые искусственные, в частности, экстремальные условия, т.е. изучаться при сверхнизких температурах, при чрезвычайно высоких давлениях или, наоборот, в вакууме, при огромных напряженностях электромагнитного поля и т.п. В таких искусственно созданных условиях удается обнаружить удивительные, порой неожиданные свойства объектов и тем самым глубже постигать их сущность. Очень интересными и многообещающими являются в этом плане космические эксперименты, позволяющие изучать объекты, явления в таких особых, необычных условиях (невесомость, глубокий вакуум), которые недостижимы в земных лабораториях.

В-третьих, изучая какой–либо процесс, экспериментатор может вмешиваться в него, активно влиять на его протекание. Как отмечал академик И.П.Павлов, «опыт как бы берет явления в свои руки и пускает в ход то одно, то другое и таким образом в искусственных, упрощенных комбинациях определяет истинную связь между явлениями. Иначе говоря, наблюдение собирает то, что ему предлагает природа, опыт же берет у природы то, что хочет».[56]

В-четвертых, важным достоинством многих экспериментов является их воспроизводимость. Это означает, что условия эксперимента (а соответственно и проводимые при этом наблюдения, измерения) могут быть повторены столько раз, сколько это необходимо для получения достоверных результатов.

Однако с наступлением эпохи постнеклассической науки представления о воспроизводимости экспериментов (а соответственно и о стратегиях эмпирического исследования) существенно изменились. Дело в том, что «идеал воспроизводимости эксперимента применительно к развивающимся системам должен пониматься в особом смысле… Существуют уникальные исторически развивающиеся системы. Эксперимент, основанный на энергетическом и силовом взаимодействии с такой системой, в принципе не позволит воспроизводить ее в одном и том же начальном состоянии. Сам акт первичного «приготовления» этого состояния меняет систему, направляя ее в новое русло развития, а необратимость процессов развития не позволяет вновь воссоздать начальное состояние. Поэтому для уникальных развивающихся систем требуется особая стратегия экспериментального исследования. Их эмпирический анализ осуществляется чаще всего методом вычислительного эксперимента на ЭВМ, что позволяет выявить разнообразие возможных структур, которые способна породить система».[57]

Подготовка и проведение эксперимента требуют соблюдения ряда условий. Так, научный эксперимент:

-никогда не ставится «наобум», он предполагает наличие четко сформулированной цели исследования;

-не делается «вслепую», он всегда базируется на каких–то исходных теоретических положениях;

-не проводится беспланово, хаотически, исследователь предварительно намечает пути его проведения;

-требует определенного уровня развития технических средств по-

знания, необходимого для его реализации;

-должен проводиться людьми, имеющими достаточно высокую квалификацию.

Только совокупность всех этих условий определяет успех в экспериментальных исследованиях.

В зависимости от характера проблем, решаемых в ходе экспериментов, последние обычно подразделяются на исследовательские и проверочные.

Исследовательские эксперименты дают возможность обнаружить у объекта новые, неизвестные свойства. Результатом такого эксперимента могут быть выводы, не вытекающие из имевшихся знаний об объекте исследования. Примером могут служить эксперименты, поставленные в лаборатории Э.Резерфорда, в ходе которых обнаружилось странное поведение альфа-частиц при бомбардировке ими золотой фольги: большинство частиц проходило сквозь фольгу, небольшое количество частиц отклонялось и рассеивалось, а некоторые частицы не просто отклонялись, а отскакивали обратно, как мяч от сетки. Такая экспериментальная картина, согласно расчетам, получалась в силу того, что вся масса атома сосредоточена в ядре, занимающем ничтожную часть его объема (отскакивали обратно альфа-частицы, соударявшиеся с ядром). Так исследовательский эксперимент, проведенный Резерфордом и его сотрудниками, привел к обнаружению ядра атома, а тем самым и к рождению ядерной физики.

Проверочные эксперименты служат для проверки, подтверждения тех или иных теоретических построений. Так, существование целого ряда элементарных частиц (позитрона, нейтрино и др.) было вначале предсказано теоретически, и лишь позднее они были обнаружены экспериментальным путем.

Проникновение человеческого познания в микромир потребовало проведения экспериментальных исследований, в которых нельзя было пренебречь воздействием прибора на изучаемый объект. С началом ХХ века это становится одной из характерных черт нового, неклассического естествознания. В отличие от прежней классической науки, в новых условиях исследования потребовался четкий учет особенностей технических средств наблюдения и эксперимента, которые взаимодействуют с объектом (точнее сказать, микрообъектом) познания.

Исходя из методики проведения и получаемых результатов, эксперименты можно разделить на качественные и количественные.

Качественные эксперименты носят поисковый характер и не приводят к получению каких–либо количественных соотношений. Они позволяют лишь выявить действие тех или иных факторов на изучаемое явление.

Количественные эксперименты направлены на установление точных количественных зависимостей в исследуемом явлении. В реальной практике экспериментального исследования оба указанных типа экспериментов реализуются, как правило, в виде последовательных этапов развития познания.

Как известно, связь между электрическими и магнитными явлениями была впервые открыта датским физиком Эрстедом в результате чисто качественного эксперимента (поместив магнитную стрелку компаса рядом с проводником, через который пропускался электрический ток, он обнаружил, что стрелка отклоняется от первоначального положения). После опубликования Эрстедом своего открытия последовали количественные эксперименты французских ученых Био и Савара, а также опыты Ампера, на основе которых была выведена соответствующая математическая формула. Все эти качественные и количественные эмпирические исследования заложили основы учения об электромагнетизме.

В зависимости от области научного знания, в которой используется экспериментальный метод исследования, различают естественнонаучный и прикладной (в технических науках, сельскохозяйственной науке и т.д.) эксперименты.

В конце XIX века, например, два видных ученых Г. Герц и А. С. Попов занимались экспериментальным изучением электромагнитных колебаний. Но Герц ставил перед собой лишь задачу экспериментальной проверки теоретических построений Максвелла. Практическое применение электромагнитных колебаний его не интересовало. Поэтому эксперименты Герца, в ходе которых были получены электромагнитные волны, предсказанные теорией Максвелла, следует рассматривать как естественнонаучные. Что же касается экспериментов А.С.Попова, то они с самого начала имели четкую прикладную направленность (как практически использовать «волны Герца»?) и были экспериментами в области зарождающейся прикладной науки – радиотехники.

Существует мнение, что эксперимент является лишь техническим воплощением замысла ученого-теоретика. При этом ссылаются на совершенствование и усложнение техники эксперимента, увеличение точности измерений и т.д. Действительно, история многих крупных открытий неразрывно связана с историей развития экспериментальной техники, методики проведения экспериментальных исследований. Например, аномальный магнитный момент электрона, играющий большую роль в квантовой электродинамике и при изучении свойств элементарных частиц, был открыт благодаря технике использования молекулярных пучков (интересно отметить, что эта техника была изобретена не для этой цели). Однако в ходе опытов появилось неожиданное расхождение с теорией. Это позволило сделать открытие, которое никто не предвидел. Как справедливо заметил известный американский физик Р.Фейнман, «один из верных способов остановить прогресс науки – это разрешить эксперименты лишь в тех областях, где законы уже открыты. Но экспериментаторы усерднее всего ведут поиск там, где вероятнее всего найти опровержение наших теорий».[58]

Экспериментатор задается целью решить некоторую задачу, причем, зачастую в области, где еще не создана соответствующая теория. Это требует от него не только высокого технического мастерства, но и опоры на всю мощь теоретической мысли, особого дара наблюдательности (позволяющего выделять детали, ускользающие от внимания других людей), способности мысленно отвлекаться от непосредственного поля наблюдения, проводить различные аналогии и делать (порой неожиданные) сопоставления, умения создавать оригинальные экспериментальные ситуации и т.д. Разработка многих экспериментов свидетельствует, что только сочетание всех этих компонентов научного творчества может направлять ученого по правильному пути.

Завершая рассмотрение экспериментального метода исследования, следует упомянуть об очень важной проблеме планирования эксперимента. Еще в первой половине ХХ столетия все экспериментальные исследования сводились к проведению так называемого однофакторного эксперимента, когда изменялся какой–то один фактор исследуемого процесса, а все остальные оставались неизменными. Но развитие науки настойчиво требовало исследования процессов, зависящих от множества меняющихся факторов. Использование в этом случае методики однофакторного эксперимента было бессмысленным, ибо требовало астрономического количества опытов.

Достигнутые успехи в теоретической разработке и практическом применении планирования эксперимента в научных исследованиях привели к появлению новой дисциплины – математической теории эксперимента. Эта теория направлена на решение задачи получения достоверного результата экспериментального исследования с минимальными затратами труда, времени и средств. В итоге достигается оптимизация работы экспериментатора при одновременном обеспечении высокого качества экспериментальных исследований. А «высокое качество эксперимента, – как подчеркивал академик П.Л.Капица, – является необходимым условием здорового развития науки».[59]

Измерение

Большинство научных экспериментов и наблюдений включает в себя проведение разнообразных измерений. Измерение – это процесс, заключающийся в определении количественных значений тех или иных свойств, сторон изучаемого объекта, явления с помощью специальных технических устройств.

Огромное значение измерений для науки отмечали многие видные ученые. Например, Д.И.Менделеев подчеркивал, что «наука начинается с тех пор, как начинают измерять». А известный английский физик В.Томсон (Кельвин) указывал на то, что «каждая вещь известна лишь в той степени, в какой ее можно измерить».

Важной стороной процесса измерения является методика его проведения. Она представляет собой совокупность приемов, использующих определенные принципы и средства измерений. Под принципами измерений в данном случае имеются в виду какие–то явления, которые положены в основу измерений (например, измерение температуры с использованием термоэлектрического эффекта).

Наличие субъекта (исследователя), производящего измерения, не всегда является обязательным. Он может и не принимать непосредственного участия в процессе измерения, если измерительная процедура включена в работу автоматической информационно-измерительной системы (человек-исследователь находится «рядом» с этой системой, налаживает и контролирует ее). Последняя строится на базе электронно-вычислительной техники. Причем с появлением сравнительно недорогих микропроцессорных вычислительных устройств в измерительной технике стало возможным создание «интеллектуальных» приборов, в которых обработка данных измерений производится одновременно с чисто измерительными операциями.

Результат измерения получается в виде некоторого числа единиц измерения. Единица измерения – это эталон, с которым сравнивается измеряемая сторона объекта или явления (эталону присваивается числовое значение «1»). Существует множество единиц измерения, соответствующее множеству объектов, явлений, их свойств, сторон, связей, которые приходится измерять в процессе научного познания. При этом единицы измерения подразделяются на основные, выбираемые в качестве базисных при построении системы единиц, и производные, выводимые из других единиц с помощью каких–то математических соотношений.

Методика построения системы единиц как совокупности основных и производных была впервые предложена в 1832 году К.Гауссом. Он построил систему единиц, в которой за основу были приняты три произвольные, независимые друг от друга основные единицы: длины (миллиметр), массы (миллиграмм) и времени (секунда). Все остальные (производные) единицы можно было определить с помощью этих трех. В дальнейшем, с развитием науки и техники появились и другие системы единиц физических величин, построенные по принципу, предложенному Гауссом. Они базировались на метрической системе мер, но отличались друг от друга основными единицами.

Вопрос об обеспечении единообразия в измерении величин, отражающих те или иные явления материального мира, всегда был очень важным. Отсутствие такого единообразия порождало существенные трудности для научного познания. Например, до 80-х годов XIXв. не существовало никакого единства в измерении электрических величин: использовалось 15 различных единиц электрического сопротивления, 8 единиц электродвижущей силы, 5 единиц электрического тока и т.д. Сложившееся положение сильно затрудняло сопоставление результатов измерений и расчетов, выполненных различными исследователями. Остро ощущалось необходимость введения единой системы электрических единиц. Такая система была принята первым международным конгрессом по электричеству, состоявшемся в 1881 году.

В настоящее время в естествознании действует преимущественно Международная система единиц (СИ), принятая в 1960 году XI Генеральной конференцией по мерам и весам. Международная система единиц построена на базе семи основных (метр, килограмм, секунда, ампер, кельвин, кандела, моль) и двух дополнительных (радиан, стерадиан) единиц. С помощью специальной таблицы множителей и приставок можно образовывать кратные и дольные единицы (например, с помощью множителя 10-3 и приставки «милли» к наименованию любой из названных выше единиц измерения можно образовывать дольную единицу размером в одну тысячную от исходной).

Международная система единиц физических величин является наиболее совершенной и универсальной из всех существовавших до настоящего времени. Она охватывает физические величины механики, термодинамики, электродинамики и оптики, которые связаны между собой физическими законами.

Существует несколько видов измерений. Исходя из характера зависимости измеряемой величины от времени измерения разделяют на статические и динамические. При статических измерениях величина, которую мы измеряем, остается постоянной во времени (измерение размеров тел, постоянного давления и т.п.). К динамическим относятся такие измерения, в процессе которых измеряемая величина меняется во времени (измерение вибрации, пульсирующих давлений и т.п.).

По способу получения результатов различают измерения прямые и косвенные. В прямых измерениях искомое значение измеряемой величины получается при непосредственном сравнении ее с эталоном или выдается измерительным прибором. Косвенное измерение искомой величины осуществляется на основании известной математической зависимости между этой величиной и другими величинами, получаемыми путем прямых измерений (например, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения). Косвенные измерения широко используются в тех случаях, когда искомую величину невозможно или слишком сложно измерить непосредственно или когда прямое измерение дает менее точный результат.

Хорошо развитое измерительное приборостроение, разнообразие методов и высокие характеристики средств измерения способствуют прогрессу в научных исследованиях. В свою очередь, решение научных проблем, как уже отмечалось выше, часто открывает новые пути совершенствования самих измерений.

 





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 1293 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2806 - | 2367 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.