Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Матричный метод решения СЛАУ




Систему линейных алгебраических уравнений с неизвестными и определителем основной матрицы А системы, отличным от нуля, можно решать с помощью обратной матрицы.

Пусть дана система уравнений (6.3), основная матрица А которой невырожденная. Система имеет единственное решение, которое можно найти по формуле:

,

где - матрица, обратная к А.

Пример. Решить систему предыдущего пункта матричным методом.

Решение. Данная система в матричной форме имеет вид , где , , . Ее решение .

1) Находим обратную матрицу .

1.

2. , , ,

, , ,

, ,

3.

4.

5.

2)

Ответ: , , .

Решение и исследование систем линейных
алгебраических уравнений

Полный ответ на вопрос о существовании решения системы линейных уравнений с неизвестными дает следующая теорема Кронекера-Капелли.

Для того чтобы система уравнений (6.1) была совместна, необходимо и достаточно, чтобы ранг расширенной матрицы был равен рангу основной матрицы системы. Если ранги основной и расширенной матриц совпадают с числом неизвестных, то система имеет единственное решение. Если ранг основной и расширенной матриц меньше числа неизвестных , то система (6.1) имеет бесконечное множество решений.

В последнем случае неизвестных назовем базисным, а - свободными. Свободным неизвестным можно придавать произвольные значения, тогда оставшиеся неизвестных определяются уже единственным образом.

Метод Гаусса (метод последовательного исключения неизвестных).

Метод Гаусса состоит в том, что при помощи элементарных преобразований систему приводят к такому виду, чтобы ее расширенная матрица оказалась трапециевидной (ступенчатой). После этого уже не представляет труда разобраться в вопросе о совместности системы, определить число решений и найти сами решения.

Поясним идею метода Гаусса на примерах.

Пример. Решить систему .

Решение. Выписываем расширенную матрицу системы. С помощью элементарных преобразований приведем матрицу к ступенчатому виду

Если не учитывать последний столбец, найдем ранг основной матрицы ; учитывая последней столбец, найдем ранг расширенной матрицы . Число неизвестных тоже равно 3. Система совместна и имеет единственное решение. Полученной матрице соответствует эквивалентная система:

Далее порядок действий очевиден. Из последнего уравнения ; подставляя это значение во второе уравнение, мы получаем . И наконец, из первого уравнения находим .

Замечания. При переходе от первой матрицы ко второй в качестве рабочей строки бралась первая, которая умножалась соответственно на 2 и (-1) и складывалась со второй и третьей строками. В результате мы получили нули в первом столбце. При переходе от второй матрицы к третьей в качестве рабочей строки бралась вторая, которая умножалась на (-2) и складывалась с третьей строкой.

Пример. Исследовать систему .

Решение.

Составим расширенную матрицу и приведем ее к ступенчатому виду.

Так как , , то система несовместна.

Пример. Решить систему .

Так как , , то система совместна. Она имеет бесчисленное множество решений, потому что ранг матрицы меньше числа неизвестных. Восстановим систему по последней матрице:

Базисными неизвестными являются и , переменная - свободной. Обратной подстановкой найдем и из системы:

,

где - любое действительное число.





Поделиться с друзьями:


Дата добавления: 2016-11-23; Мы поможем в написании ваших работ!; просмотров: 392 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2377 - | 2186 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.