Окислительный метаболизм. Бактерии, обладающие окислительным метаболизмом, энергию получают путем дыхания.
Дыхание — процесс получения энергии в реакциях окисления-восстановления, сопряженных с реакциями окислительного фосфорилирования, при котором донорами электронов могут быть органические (у органотрофов) и неорганические (у литотрофов) соединения, а акцептором — только неорганические соединения.
У бактерий, обладающих окислительным метаболизмом, акцептором электронов (или водорода (Н+)) является молекулярный кислород. В этом случае пируват полностью окисляется в цикле трикарбоновых кислот до С2. Цикл трикарбоновых кислот выполняет функции как поставщика предшественников для биосинтетических процессов, так и атомов водорода, который в форме восстановленного НАД переносится на молекулярный кислород через серию переносчиков, обладающих сложной структурно оформленной мультиферментной системой — дыхательной цепью. Дыхательная цепь у бактерий локализована в ЦПМ и во внутриклеточных мембранных структурах.
Переносчики, осуществляющие транспорт водорода (электронов) на молекулярный кислород, относятся к 4 классам дегидрогеназ, коферментами которых являются НАД, флавопротеины, хиноны и цитохромы. Протоны (электроны) передвигаются от одного носителя к другому в направлении увеличивающегося окислительно-восстановительного потенциала. Типичная цепь выглядит следующим образом:
ЦТК —> НАД(Н2) —> флавопротеид —> хинон ---> цитохромы: в —> с --> а — O2
Среди бактериальных цитохромов различают цитохромы в, с, а и а3. Конечным этапом переноса электронов (протонов) по дыхательной цепи является восстановление цитохромов а - а3 (цитохромоксидазы). Цитохромоксидаза является конечной оксидазой, передающей электроны на кислород. В процессе переноса электронов по цитохромам меняется валентность входящего в состав железопорфирированной группы железа. Завершается перенос электронов реакцией O2 + 4F2+ 2О2 + 4F3+. Образующиеся при окислении ФАД или хинонов протоны связываются ионами О2" с образованием воды.
Образование АТФ вдыхательной цепи связывают с хемоосмотическим процессом. Особая ориентация переносчиков в ЦПМ приводит к тому, что передача водорода происходит с внутренней на внешнюю поверхность мембраны, в результате чего создается градиент атомов водорода, проявляющийся в наличии мембранного потенциала. Энергия мембранного потенциала используется для синтеза локализованной в мембране АТФазой АТФ.
В это время у эукариотов ферменты дыхательной цепи имеют относительно постоянный состав, у бактерий встречаются вариации в составе дыхательной цепи. Так, у многих бактерий вместо убихинонов имеются нафтохиноны, состав цитохромов может зависеть от условий роста бактерий. У некоторых бактерий цитохромы отсутствуют, и при контакте с кислородом происходит непосредственный перенос водорода на кислород с помощью флавопротеидов, конечным продуктом при этом оказывается перекись водорода — Н2О2.
Помимо углеводов прокариоты способны использовать другие органические соединения, в частности белки, в качестве источника энергии, окисляя их полностью до СО2 и Н2О.
Аминокислоты и белки также могут выступать в качестве энергетических ресурсов. Их использование связано, в первую очередь, с определенными ферментативными преобразованиями подготовительного характера. Белки вначале вне клетки расщепляются протеолитическими ферментами на пептиды, которые поглощаются клеткой и расщепляются внутриклеточными пептидазами до аминокислот. Аминокислоты могут использоваться в конструктивном метаболизме, а могут у аммонифицирующих бактерий служить основным материалом в энергетических процессах при окислительном дезаминировании, в результате которого происходит выделение аммиака и превращение аминокислоты в кетокислоту, которая через цикл трикарбоновых кислот вступает в конструктивный метаболизм:
2R-CHNH2-СООН + O2 -> 2R-СО—COOH + 2NH3
Процесс аммонификации известен как «гниение», при этом происходит накопление продуктов, обладающих неприятным специфическим запахом образующихся при этом первичных аминов.
Гнилостные бактерии осуществляют минерализацию белка, разлагая его до СО2, NH3, H2S. К гнилостным бактериям относятся Proteus, Pseudomonas, Bacillus cereus.
Бродильный (ферментативный) метаболизм.
Ферментация, или брожение, — процесс получения энергии, при котором отщепленный от субстрата водород переносится на органические соединения.
Кислород в процессе брожения участия не принимает. Восстановленные органические соединения выделяются в питательную среду и накапливаются в ней. Ферментироваться могут углеводы, аминокислоты (за исключением ароматических), пурины, пиримидины, многоатомные спирты. Не способны сбраживаться ароматические углеводороды, стероиды, каротиноиды, жирные кислоты. Эти вещества разлагаются и окисляются только в присутствии кислорода, в анаэробных условиях они стабильны. Продуктами брожения являются кислоты, газы, спирты.
При ферментации гексоз (глюкозы) пируват лишь частично окисляется в цикле трикарбоновых кислот. Последний выполняет только функции поставщика предшественников для биосинтетических процессов. Энергия в форме 2 молекул АТФ образуется в результате субстратного фосфорилирования, протекающего при окислении триозофосфата в пируват. Отщепившийся от субстрата водород, находящийся в форме восстановленного НАД, переносится на пируват, превращая его в цепи реакций в этанол, кислоты, газы. Исходя из природы конечных продуктов, различают несколько типов ферментации углеводов.
Спиртовое брожение. Встречается, в основном, у дрожжей. Конечными продуктами являются этанол и СО2. Сбраживание глюкозы происходит по ФДФ-пути в анаэробных условиях. При доступе кислорода процесс брожения ослабевает, на смену ему приходит дыхание. Подавление спиртового брожения кислородом называется эффектом Пастера.
Спиртовое брожение используется в пищевой промышленности: хлебопекарной, виноделии.
Молочнокислое брожение. Различают два типа молочнокислого брожения: гомоферментативное и гетероферментативное.
При гомоферментативном типе расщепление глюкозы проходит по ФДФ-пути. Водород от восстановленного НАД передается на пируват при помощи лактатдегидрогеназы, при этом образуется молочная кислота. Гомоферментативное молочнокислое брожение происходит у S. pyogenes, E.faecalis, S. salivarius у некоторых видов рода Lactobacillus: L. dulgaricus, L. lactis.
Гетероферментативное молочнокислое брожение присутствует у бактерий, у которых отсутствуют ферменты ФДФ-пути: альдолаза и триозофосфатизомераза. Расщепление глюкозы происходит по ПФ-пути с образованием фосфоглицеринового альдегида, который превращается далее в пируват по ФДФ-пути ив последующем восстанавливается в лактат. Дополнительными продуктами этого типа брожения являются также этанол, уксусная кислота. Гетероферментативное молочнокислое брожение встречается у различных представителей бактерий родов Lactobacillus и Bifidobacterium.
Продукты молочнокислого брожения играют большую роль в формировании колонизационной резистентности бактериями рода Lactobacillus и Bifidobacterium, составляющих облигатную флору кишечника.
Молочнокислые бактерии широко используются в молочной промышленности для получения молочнокислых продуктов, а также в создании пробиотиков.
Муравьинокислое (смешанное) брожение. Встречается у представителей семейств Enterobacteriaceae Vibrionaceae. Глюкоза расщепляется по ФДФ-пути, глюконат расщепляется по КДФГ-пути.
В зависимости от продуктов брожения, выделяющихся в анаэробных условиях, различают два типа процессов:
1. В одном случае происходит расщепление пирувата с образованием ацетилкофермента А и муравьиной кислоты, которая, в свою очередь, может расщепляться на двуокись углерода и молекулярный водород. Другими продуктами брожения, образующимися через цепь реакций, являются этанол, янтарная и молочная кислоты. Сильное кислотообразование можно выявить реакцией с индикатором метил-рот, который меняет окраску в сильно кислой среде.
2. При другом типе брожения образуется целый ряд кислот, однако главным продуктом брожения являются ацетоин и 2,3-бутандиол. Ацетоин образуется из двух молекул пирувата с последующим двукратным декарбоксилированием. При последующем восстановлении ацетоина образуется 2,3-бутандиол. Эти вещества при взаимодействии аl-нафтол в щелочной среде вызывают образование окраски бурого цвета, что выявляется реакцией Фогеса—Проскауэра, используемой при идентификации бактерий.
Маслянокислое брожение. Масляная кислота, бутанол, ацетон, изопропанол и ряд других органических кислот, в частности уксусная, капроновая, валерьяновая, пальмитиновая, являются продуктами сбраживания углеводов сахароли-тическими строгими анаэробами. Спектр этих кислот, определяемый при помощи газожидкостной хроматографии, используется как экспресс-метод при идентификации анаэробов.
Ферментация белков. Если для бактерий с бродильным метаболизмом источником энергии служат белки, то такие бактерии называются пептолитическими. Пептолитическими являются некоторые клостридии, в частности С. histolyticum, С. botulinum. Пептолитические бактерии гидролизуют белки и сбраживают аминокислоты. Многие аминокислоты сбраживаются совместно с другими, при этом одна выполняет функцию донора, а другая функцию — акцептора водорода. Аминокислота-донор дезаминируется в кетокислоту, которая в результате окислительного декарбоксилирования превращается в жирную кислоту.
5 классификация бактерий по отношению к кислороду. Особенности культивирования анаэробов.
Кислород, широко распространенный в природе, находится в свободном и связанном состоянии. В клетках он находится в связанном состоянии в составе воды и органических соединений. В атмосфере он присутствует в свободном состоянии в виде молекулярной формы, объемная доля которого составляет 21 %.
По отношению к кислороду, а также по использованию его в процессах получения энергии микроорганизмы подразделяются на 3 группы: облигатные аэробы, облигатные анаэробы, факультативные анаэробы.
Облигатные аэробы.
Растут и размножаются только в присутствии кислорода. Используют кислород для получения энергии путем кислородного дыхания.
Энергию получают оксидативным метаболизмом, используя кислород как терминальный акцептор электронов в реакции, катализируемой цитохромоксидазой.
Облигатные аэробы подразделяются на строгие аэробы, которые растут при парциальном давлении атмосферы воздуха, и микроаэрофилы, которые, используя кислород в процессах получения энергии, растут при его пониженном парциальном давлении.
Это связано с тем, что у микроаэрофилов имеются ферменты, которые инактивируются при контакте с сильными окислителями и активны только при низких значениях парциального давления кислорода, например, фермент гидрогеназа.
Облигатные анаэробы.
Не используют кислород для получения энергии.
Тип метаболизма у них — бродильный, за исключением метаболизма у двух видов бактерий: Desulfovibrio и Desulfotomaculum, которые относятся к хемолитотрофам и обладают сульфатным дыханием. Облигатные анаэробы подразделяются на две группы: строгие анаэробы и аэротолерантные.
Строгие анаэробы характеризуются тем, что молекулярный кислород для них токсичен: он убивает микроорганизмы или ограничивает их рост.
Энергию строгие анаэробы получают маслянокислым брожением. К строгим анаэробам относятся, например, некоторые клостридии (С. botulinum, С, tetani), бактероиды.
Аэротолерантные микроорганизмы не используют кислород для получения энергии, но могут существовать в его атмосфере.
К этой группе относятся молочнокислые бактерии, получающие энергию гетероферментативным молочнокислым брожением.
Методы культивирования анаэробов.
Для культивирования анаэробов необходимо понизить окислительно-восстановительный потенциал среды, создать условия анаэробиоза, т. е. пониженного содержания кислорода в среде и окружающем ее пространстве. Это достигается применением физических, химических и биологических методов.
Физические методы. Основаны на выращивании микроорганизмов в безвоздушной среде, что достигается:
1) посевом в среды, содержащие редуцирующие и легко окисляемые вещества;
2) посевом микроорганизмов в глубину плотных питательных сред;
3) механическим удалением воздуха из сосудов, в которых выращиваются анаэробные микроорганизмы;
4) заменой воздуха в сосудах каким-либо индифферентным газом.
В качестве редуцирующих веществ обычно используют кусочки (около 0,5 г) животных или растительных тканей (печень, мозг, почки, селезенка, кровь, картофель, вата). Эти ткани связывают растворенный в среде кислород и адсорбируют бактерии. Чтобы уменьшить содержание кислорода в питательной среде, ее перед посевом кипятят 10—15 мин, а затем быстро охлаждают и заливают сверху небольшим количеством стерильного вазелинового масла. Высота слоя масла в пробирке около 1 см.
В качестве легко окисляемых веществ используют глюкозу, лактозу и муравьинокислый натрий.
Лучшей жидкой питательной средой с редуцирующими веществами является среда Китта — Тароцци, которая используется с успехом для накопления анаэробов при первичном посеве из исследуемого материала и для поддержания роста выделенной чистой культуры анаэробов.
Посев микроорганизмов в глубину плотных сред производят по способу Виньяль — Вейона, который состоит в механической защите посевов анаэробов от кислорода воздуха. Берут стеклянную трубку длиной 30 см и диаметром 3—6 мм. Один конец трубки вытягивают в капилляр в виде пастеровской пипетки, а у другого конца делают перетяжку. В оставшийся широкий конец трубки вставляют ватную пробку. В пробирки с расплавленным и охлажденным до 50°С питательным агаром засевают исследуемый материал. Затем насасывают засеянный агар в стерильные трубки Виньяль — Вейона. Капиллярный конец трубки запаивают в пламени горелки и трубки помещают в термостат. Так создаются благоприятные условия для роста самых строгих анаэробов. Для выделения отдельной колонии трубку надрезают напильником, соблюдая правила асептики, на уровне колонии, ломают, а колонию захватывают стерильной петлей и переносят в пробирку с питательной средой для дальнейшего выращивания и изучения в чистом виде.
Удаление воздуха производят путем его механического откачивания из специальных приборов — анаэростатов, в которые помещают чашки с посевом анаэробов. Переносный анаэростат представляет собой толстостенный металлический цилиндр с хорошо притертой крышкой (с резиновой прокладкой), снабженный отводящим краном и вакуумметром. После размещения засеянных чашек или пробирок воздух из анаэростата удаляют с помощью вакуумного насоса.
Замену воздуха индифферентным газом (азотом, водородом, аргоном, углекислым газом) можно производить в тех же анаэростатах путем вытеснения его газом из баллона.
Химические методы. Основаны на поглощении кислорода воздуха в герметически закрытом сосуде (анаэростате, эксикаторе) такими веществами, как пирогаллол или гидросульфит натрия Na2S2О4.
Биологические методы. Основаны на совместном выращивании анаэробов со строгими аэробами. Для этого из застывшей агаровой пластинки по диаметру чашки вырезают стерильным скальпелем полоску агара шириной около 1 см. Получается два агаровых полудиска в одной чашке. На одну сторону агаровой пластинки засевают аэроб, например, часто используют S.aureus или Serratiamarcescens. На другую сторону засевают анаэроб. Края чашки заклеивают пластилином или заливают расплавленным парафином и помещают в термостат. При наличии подходящих условий в чашке начнут размножаться аэробы. После того, как весь кислород в пространстве чашки будет ими использован, начнется рост анаэробов (через 3—4 сут). В целях сокращения воздушного пространства в чашке питательную среду наливают возможно более толстым слоем.
Комбинированные методы. Основаны на сочетании физических, химических и биологических методов создания анаэробиоза.
6 ферменты бактерий. Их классификация. Ферментативная активность микробов и ее использование для идентификации бактерий.
В основе всех метаболических реакций в бактериальной клетке лежит деятельность ферментов, которые принадлежат к 6 классам: оксиредуктазы, трансферазы, гидролазы, лигазы, лиазы, изомеразы. Ферменты, образуемые бактериальной клеткой, могут локализоваться как внутри клетки — эндоферменты, так и выделяться в окружающую среду — экзоферменты. Экзоферменты играют большую роль в обеспечении бактериальной клетки доступными для проникновения внутрь источниками углерода и энергии. Большинство гидролаз является экзоферментами, которые, выделяясь в окружающую среду, расщепляют крупные молекулы пептидов, полисахаридов, липидов до мономеров и димеров, способных проникнуть внутрь клетки. Ряд экзоферментов, например гиалуронидаза, коллагеназа и другие, являются ферментами агрессии. Некоторые ферменты локализованы в периплазматическом пространстве бактериальной клетки. Они участвуют в процессах переноса веществ в бактериальную клетку. Ферментативный спектр является таксономическим признаком, характерным для семейства, рода и — в некоторых случаях — для видов. Поэтому определением спектра ферментативной активности пользуются при установлении таксономического положения бактерий. Наличие экзоферментов можно определить при помощи дифференциально-диагностических сред, поэтому для идентификации бактерий разработаны специальные тест-системы, состоящие из набора дифференциально-диагностических сред.
Идентификация бактерий по ферментативной активности.
Наиболее часто определяют ферменты класса гидролаз и оксидоредуктаз, используя специальные методы и среды.
Для определения протеолитической активности микроорганизмы засевают в столбик желатина уколом. Через 3—5 дней посевы просматривают и отмечают характер разжижения желатина. При разложении белка некоторыми бактериями могут выделяться специфические продукты — индол, сероводород, аммиак. Для их определения служат специальные индикаторные бумажки, которые помещают между горлышком и ватной пробкой в пробирку с МПБ или (и) пептонной водой, засеянными изучаемыми микроорганизмами. Индол (продукт разложения триптофана) окрашивает в розовый цвет полоску бумаги, пропитанной насыщенным раствором щавелевой кислоты. Бумага, пропитанная раствором ацетата свинца, в присутствии сероводорода чернеет. Для определения аммиака используют красную лакмусовую бумажку.
Для многих микроорганизмов таксономическим признаком служит способность разлагать определенные углеводы с образованием кислот и газообразных продуктов. Для выявления этого используют среды Гисса, содержащие различные углеводы (глюкозу, сахарозу, мальтозу, лактозу и др.). Для обнаружения кислот в среду добавлен реактив Андреде, который изменяет свой цвет от бледно-желтого до красного в интервале рН 7,2—6,5, поэтому набор сред Гисса с ростом микроорганизмов называют «пестрым рядом».
Для обнаружения газообразования в жидкие среды опускают поплавки или используют полужидкие среды с 0,5% агара.
Для того чтобы определить интенсивное кислотообразование, характерное для брожения смешанного типа, в среду с 1% глюкозы и 0,5% пептона (среда Кларка) добавляют индикатор метиловый красный, который имеет желтый цвет при рН 4,5 и выше, и красный —при более низких значениях рН.
Гидролиз мочевины определяют по выделению аммиака (лакмусовая бумажка) и подщелачиванию среды.
При идентификации многих микроорганизмов используют реакцию Фогеса — Проскауэра на ацетоин — промежуточное соединение при образовании бутандиола из пировиноградной кислоты. Положительная реакция свидетельствует о наличии бутандиолового брожения.
Обнаружить каталазу можно по пузырькам кислорода, которые начинают выделяться сразу же после смешивания микробных клеток с 1 % раствором перекиси водорода.
Для определения цитохромоксидазы применяют реактивы: 1) 1% спиртовый раствор сс-нафтола-1; 2) 1% водный раствор N-диметил-р-фенилендиамина дигидрохлорида. О наличии цитохромоксидазы судят по синему окрашиванию, появляющемуся через 2—5 мин.
Для определения нитритов используют реактив Грисса: Появление красного окрашивания свидетельствует о наличии нитритов.
7 рост и размножение бактерий. Температурные границы роста. Фазы размножения бактерий на жидких питательных средах.
Жизнедеятельность бактерий характеризуется ростом — формированием структурно-функциональных компонентов клетки и увеличением самой бактериальной клетки, а также размножением — самовоспроизведением, приводящим к увеличению количества бактериальных клеток в популяции.
Бактерии размножаются путем бинарного деления пополам, реже путем почкования. Актиномицеты, как и грибы, могут размножаться спорами. Актиномицеты, являясь ветвящимися бактериями, размножаются путем фрагментации нитевидных клеток. Грамположительные бактерии делятся путем врастания синтезирующихся перегородок деления внутрь клетки, а грамотрицательные — путем перетяжки, в результате образования гантелевидных фигур, из которых образуются две одинаковые клетки.
Делению клеток предшествует репликация бактериальной хромосомы по полуконсервативному типу (двуспиральная цепь ДНК раскрывается, и каждая нить достраивается комплементарной нитью), приводящая к удвоению молекул ДНК бактериального ядра — нуклеоида.
Репликация ДНК происходит в три этапа: инициация, элонгация, или рост цепи, и терминация.
Размножение бактерий в жидкой питательной среде. Бактерии, засеянные в определенный, не изменяющийся объем питательной среды, размножаясь, потребляют питательные элементы, что приводит в дальнейшем к истощению питательной среды и прекращению роста бактерий. Культивирование бактерий в такой системе называют периодическим культивированием, а культуру — периодической. Если же условия культивирования поддерживаются путем непрерывной подачи свежей питательной среды и оттока такого же объема культуральной жидкости, то такое культивирование называется непрерывным, а культура — непрерывной.
При выращивании бактерий на жидкой питательной среде наблюдается придонный, диффузный или поверхностный (в виде пленки) рост культуры. Рост периодической культуры бактерий, выращиваемых на жидкой питательной среде, подразделяют на несколько фаз, или периодов:
1. лаг-фаза;
2. фаза логарифмического роста;
3. фаза стационарного роста, или максимальной концентрации бактерий;
4. фаза гибели бактерий.
Эти фазы можно изобразить графически в виде отрезков кривой размножения бактерий, отражающей зависимость логарифма числа живых клеток от времени их культивирования.
Лаг-фаза — период между посевом бактерий и началом размножения. Продолжительность лаг-фазы в среднем 4—5 ч. Бактерии при этом увеличиваются в размерах и готовятся к делению; нарастает количество нуклеиновых кислот, белка и других компонентов.
Фаза логарифмического (экспоненциального) роста является периодом интенсивного деления бактерий. Продолжительность ее около 5— 6 ч. При оптимальных условиях роста бактерии могут делиться каждые 20—40 мин. Во время этой фазы бактерии наиболее ранимы, что объясняется высокой чувствительностью компонентов метаболизма интенсивно растущей клетки к ингибиторам синтеза белка, нуклеиновых кислот и др.
Затем наступает фаза стационарного роста, при которой количество жизнеспособных клеток остается без изменений, составляя максимальный уровень (М-концентрация). Ее продолжительность выражается в часах и колеблется в зависимости от вида бактерий, их особенностей и культивирования.
Завершает процесс роста бактерий фаза гибели, характеризующаяся отмиранием бактерий в условиях истощения источников питательной среды и накопления в ней продуктов метаболизма бактерий. Продолжительность её колеблется от 10 ч до нескольких недель. Интенсивность роста и размножения бактерий зависит от многих факторов, в том числе оптимального состава питательной среды, окислительно-восстановительного потенциала, рН, температуры и др.
Размножение бактерий на плотной питательной среде. Бактерии, растущие на плотных питательных средах, образуют изолированные колонии округлой формы с ровными или неровными краями (S- и R-формы), различной консистенции и цвета, зависящего от пигмента бактерий.
Пигменты, растворимые в воде, диффундируют в питательную среду и окрашивают её. Другая группа пигментов нерастворима в воде, но растворима в органических растворителях. И, наконец, существуют пигменты, не растворимые ни в воде, ни в органических соединениях.
Наиболее распространены среди микроорганизмов такие пигменты, как каротины, ксантофиллы и меланины. Меланины являются нерастворимыми пигментами черного, коричневого или красного цвета, синтезирующимися из фенольных соединений. Меланины наряду с каталазой, супероксидцисмутазой и пероксидазами защищают микроорганизмы от воздействия токсичных перекисных радикалов кислорода. Многие пигменты обладают антимикробным, антибиотикоподобным действием.
8 принципы культивирования бактерий. Методы выделения чистых культур бактерий, цель.
Универсальным инструментом для производства посевов является бактериальная петля. Кроме нее, для посева уколом применяют специальную бактериальную иглу, а для посевов на чашках Петри — металлические или стеклянные шпатели. Для посевов жидких материалов наряду с петлей используют пастеровские и градуированные пипетки. Первые предварительно изготовляют из стерильных легкоплавких стеклянных трубочек, которые вытягивают на пламени в виде капилляров. Конец капилляра сразу же запаивают для сохранения стерильности. У пастеровских и градуированных пипеток широкий конец закрывают ватой, после чего их помещают в специальные пеналы или обертывают бумагой и стерилизуют.
При пересеве бактериальной культуры берут пробирку в левую руку, а правой, обхватив ватную пробку IV и V пальцами, вынимают ее, пронося над пламенем горелки. Удерживая другими пальцами той же руки петлю, набирают ею посевной материал, после чего закрывают пробирку пробкой. Затем в пробирку со скошенным агаром вносят петлю с посевным материалом, опуская ее до конденсата в нижней части среды, и зигзагообразным движением распределяют мате риал по скошенной поверхности агара. Вынув петлю, обжигают край пробирки и закрывают ее пробкой. Петлю стерилизуют в пламени горелки и ставят в штатив. Пробирки с посевами надписывают, указывая дату посева и характер посевного материала (номер исследования или название культуры).
Посевы «газоном» производят шпателем на питательный агар в чашке Петри. Для этого, приоткрыв левой рукой крышку, петлей или пипеткой наносят посевной материал на поверхность питательного агара. Затем проводят шпатель через пламя горелки, остужают его о внутреннюю сторону крышки и растирают материал по всей поверхности среды. После инкубации посева появляется равномерный сплошной рост бактерий.
Чистой культурой называется популяция бактерий одного вида или одной разновидности, выращенная на питательной среде. Многие виды бактерий подразделяют по одному признаку на биологические варианты — биовары. Биовары, различающиеся по биохимическим свойствам, называют хемоварами, по антигенным свойствам — сероварами, по чувствительности к фагу — фаговарами. Культуры микроорганизмов одного и того же вида, или биовара, выделенные из различных источников или в разное время из одного и того же источника, называют штаммами, которые обычно обозначаются номерами или какими-либо символами. Чистые культуры бактерий в диагностических бактериологических лабораториях получают из изолированных колоний, пересевая их петлей в пробирки с твердыми или, реже, жидкими питательными средами.
Колония представляет собой видимое изолированное скопление особей одного вида микроорганизмов, образующееся в результате размножения одной бактериальной клетки на плотной питательной среде (на поверхности или в глубине ее). Колонии бактерий разных видов отличаются друг от друга по своей морфологии, цвету и другим признакам.
Чистую культуру бактерий получают для проведения диагностических исследований — идентификации, которая достигается путем определения морфологических, культуральных, биохимических и других признаков микроорганизма.
Морфологические и тинкториальные признаки бактерий изучают при микроскопическом исследовании мазков, окрашенных разными методами, и нативных препаратов.
Культуральные свойства характеризуются питательными потребностями, условиями и типом роста бактерий на плотных и жидких питательных средах. Они устанавливаются по морфологии колоний и особенностям роста культуры.
Биохимические признаки бактерий определяются набором конститутивных и индуцибельных ферментов, присущих определенному роду, виду, варианту. В бактериологической практике таксономическое значение имеют чаще всего сахаролитические и протеолитические ферменты бактерий, которые определяют на дифференциально-диагностических средах.
При идентификации бактерий до рода и вида обращают внимание на пигменты, окрашивающие колонии и культуральную среду в разнообразные цвета. Например, красный пигмент образуют Serratia marcescens, золотистый пигмент — Staphylococcus aureus (золотистый стафилококк), сине-зеленый пигмент — Pseu-domonas aeruginosa.
Для установления биовара (хемовара, серовара, фаготипа) проводят дополнительные исследования по выявлению соответствующего маркера – определению фермента, антигена, чувствительности к Фанам.
Методы выделения чистых культур бактерий.
Универсальным инструментом для производства посевов является бактериальная петля. Кроме нее, для посева уколом применяют специальную бактериальную иглу, а для посевов на чашках Петри — металлические или стеклянные шпатели. Для посевов жидких материалов наряду с петлей используют пастеровские и градуированные пипетки. Первые предварительно изготовляют из стерильных легкоплавких стеклянных трубочек, которые вытягивают на пламени в виде капилляров. Конец капилляра сразу же запаивают для сохранения стерильности. У пастеровских и градуированных пипеток широкий конец закрывают ватой, после чего их помещают в специальные пеналы или обертывают бумагой и стерилизуют.
При пересеве бактериальной культуры берут пробирку в левую руку, а правой, обхватив ватную пробку IV и V пальцами, вынимают ее, пронося над пламенем горелки. Удерживая другими пальцами той же руки петлю, набирают ею посевной материал, после чего закрывают пробирку пробкой. Затем в пробирку со скошенным агаром вносят петлю с посевным материалом, опуская ее до конденсата в нижней части среды, и зигзагообразным движением распределяют мате риал по скошенной поверхности агара. Вынув петлю, обжигают край пробирки и закрывают ее пробкой. Петлю стерилизуют в пламени горелки и ставят в штатив. Пробирки с посевами надписывают, указывая дату посева и характер посевного материала (номер исследования или название культуры).
Посевы «газоном» производят шпателем на питательный агар в чашке Петри. Для этого, приоткрыв левой рукой крышку, петлей или пипеткой наносят посевной материал на поверхность питательного агара. Затем проводят шпатель через пламя горелки, остужают его о внутреннюю сторону крышки и растирают материал по всей поверхности среды. После инкубации посева появляется равномерный сплошной рост бактерий.