Матрицы. Действия над матрицами
Лекции.Орг

Поиск:


Матрицы. Действия над матрицами

Определители.

Пусть квадратная матрица порядка . Всякой такой матрице можно поставить в соответствие число , называемое определителем этой матрицы, которое удовлетворяет следующим условиям:

1) ; 2) ,

где – квадратная матрица порядка , получающаяся из матрицы вычеркиванием –й строки и –го столбца. Определитель называется минором порядка матрицы . Условия 1, 2 дают рекуррентное определение определителя матрицы.

Определитель обладает следующими свойствами:

1) ;

2) при перестановке двух столбцов (строк) меняется знак определителя;

3) определитель матрицы, имеющей два одинаковых столбца (две одинаковые строки), равен нулю;

4) общий множитель столбца (строки) можно вынести за знак определителя (отсюда следует, что если один из столбцов (одна из строк) матрицы состоит из нулей, то );

5) если к элементам некоторого столбца (строки) матрицы А прибавить соответствующие элементы другого столбца (другой строки), предварительно умноженные на одно и то же число, то определитель новой матрицы В будет равен

6) если какой-либо столбец (какая-либо строка) является линейной комбинацией других столбцов (других строк) матрицы А, то

7) обозначим через определитель матрицы порядка получающейся из матрицы путем зачеркивания i-й строки и j-го столбца; число называется алгебраическим дополнением элемента для любого k, справедливы равенства:

,

(разложение определителя по k-му столбцу);

8)

Пользуются и другим обозначением определителя матрицы :

Определитель второго порядка вычисляется по формуле

Определитель третьего порядка вычисляется по формуле

Для вычисления определителя третьего порядка лучше пользоваться правилом Саррюса или правилом «3 5».

+ – а б Рис. 1     Рис. 2

Правило Саррюса использует схему, изображенную на рис. 1. Правило состоит в том, что девять чисел, составляющих определитель, разбиваются на шесть троек по схеме (каждый элемент участвует дважды). Каждой тройке придается знак «+», если элементы, входящие в нее, расположены на главной диагонали или в вершинах равнобедренного треугольника с основанием, параллельным главной диагонали (рис.1, а), или «–», если элементы, входящие в тройку, расположены на побочной диагонали или в вершинах равнобедренного треугольника с основанием, параллельным побочной диагонали (рис.1, б) (побочная диагональ тянется справа-сверху-влево-вниз). Затем берется сумма произведений элементов троек с учетом их знаков.

Правило «3 ´ 5» использует следующую схему (к матрице добавлены первые два столбца). Элементы матрицы соединены шестью отрезками, как показано на рис.2. Произведению элементов, составляющих тройку и лежащих на одном отрезке, придается знак «+», если отрезок параллелен главной диагонали, и «–», если отрезок параллелен побочной диагонали. Определитель A равен сумме произведений элементов троек с учетом их знаков.

Определитель треугольной, в том числе и диагональной матрицы равен произведению элементов главной диагонали:

Для вычисления определителя иногда оказывается удобным приведение матрицы к треугольному виду с использованием свойств определителя.

Матрицы. Действия над матрицами

Матрицей порядка называется прямоугольная таблица чисел

состоящая из m строк и n столбцов, рассматриваемая как единый алгебраический объект, над которым могут производиться определенные алгебраические действия. Часто пишут

, , 1 . Множество всех матриц порядка обозначим , множество всех квадратных матриц порядка – через .

Произведением матрицы на число (действительное или комплексное) называют матрицу , определяемую по правилу при этом пишут .

Суммой матриц , называют матрицу , определяемую по правилу ; при этом пишут . Складывать можно лишь матрицы одинакового порядка.

Произведением матрицы на матрицу называют матрицу , элементы которой определяются по правилу ; при этом пишут . Произведение матриц определено, если количество столбцов первого множителя А совпадает с количеством строк второго множителя В. (Можно сказать, что элемент матрицы есть результат скалярного произведения i-й строки матрицы А на j-й столбец матрицы В.)

Введенные операции над матрицами обладают всеми известными свойствами суммы и произведения чисел

кроме одного: вообще говоря,

Матрицу

называют транспонированной к матрице А и пишут ; получается из А переменой местами столбцов и строк.

Нулевой матрицей (нуль-матрицей) называется матрица состоящая из нулей.

Единичной матрицей порядка называется квадратная матрица , на главной диагонали которой, тянущейся слева-сверху-вправо-вниз, находятся единицы, а остальные элементы равны 0:

Часто пишут просто Е, опуская индекс n там, где это не приводит к недоразумению.

Матрицы О и Е играют роль нуля и единицы: (операции считаются дозволенными).

Квадратная матрица, у которой все элементы вне главной диагонали равны 0, называется диагональной. Квадратная матрица, у которой все элементы, расположенные ниже главной диагонали, равны 0, называется треугольной.

Задачи

Рассмотрим в аудитории типичные примеры, для решения которых используются приведенные определения и понятия.

1.Вычислить определитель:

1) .

Решение.

2) .

Решение.

3) .

Вычисление определителя с помощью понижения его порядка.

Вычисление определителя порядка выше третьего следует вычислять путем последовательного сведения этого определителя к низшему порядку, разлагая его по элементам какой-либо строки или столбца. Формула разложения определителя по строке (столбцу) принимает особенно простой вид, когда в этой строке (столбце) все элементы равны нулю, кроме одного . Тогда определитель равен произведению элемента на алгебраическое дополнение этого элемента .

4) .

Решение. Умножим первую строку на два и вычтем из второй . Сложим первую и третью строки и поставим на место третьей строки , умножим первую строку на три и вычтем из четвертой строки . Получим

 

Сложим вторую и третью строки

Ко второму столбцу прибавим третий, умноженный на два :

Можно записывать так:

5)

6) ; 7) ; 8) .

Ответ. 1) –25; 2) 0; 3) –20; 4) 0; 5) -70; 6) -80;

 

7) 48; 8) 223.

 

2.Вычислить 3A – 2BC, если:

.

Ответ. .

3.Вычислить:

.

Ответ. .

4.Вычислить: а) ; б) .

Ответ. а) ; б) .


<== предыдущая лекция | следующая лекция ==>
Методи створення оптимальної моделі баз даних. Теорія нормалізованих відношень. Побудова логічної моделі даних | З погляду К. Маркса, суспільство – це сукупність відносин між людьми, що історично розвиваються та складаються в процесі їхньої спільної діяльності.

Дата добавления: 2016-11-23; просмотров: 276 | Нарушение авторских прав | Изречения для студентов


Читайте также:

Рекомендуемый контект:


Поиск на сайте:



© 2015-2020 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.