Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Краткий обзор главных этапов становления науки в собственном смысле.




Период классической науки можно разделить на два этапа: этап механистического естествознания (до 30-х г.г. XIX в.) и этап возрождения и формирования эволюционных идей (до конца XIX – начала XX века).

1. Этап механистического естествознания. Произошла научная революция в период Возрождения, в ходе которой на смену геоцентрическому учению пришло гелиоцентрическое учение Н. Коперника (1473 – 1543). Вторая глобальная научная революция 17 века связана с именами Галилея, Кеплера и Ньютона. В учении Г. Галилея (1564 – 1642) были заложены основы нового механистического естествознания. Он исследовал проблемы, связанные с движением, с инерцией. И. Кеплер (1571 – 1630) установил три закона движения планет относительно Солнца. Но Кеплер еще не мог объяснить причины движения планет, так как динамика – учение о силах и их взаимодействии - была создана позже И. Ньютоном (1643 – 1727). В работе «Математические начала натуральной философии» и в других своих работах Ньютон сформулировал понятия и законы классической механики. Основное содержание механистической картины мира сводится к следующим моментам. Весь мир есть совокупность огромного числа неделимых и неизменных частиц, перемещающихся в абсолютном пространстве и времени. Любые события этого мира жестко предопределены законами классической механики. Природа понималась как простая машина, части которой также подчинены жесткой детерминации.

2. Этап зарождения и формирования эволюционных идей. В физике благодаря работам М. Фарадея (1791 – 1867) и Д. Максвелла (1831 – 1879) по исследованию электрического и магнитного полей стали формироваться континуальные представления, приходит понимание, что основные законы мироздания – это не законы механики, а законы электродинамики. В биологии начинают побеждать идеи эволюционизма. Ж. Б. Ламарк (1744 – 1829) создал первую целостную концепцию эволюции живой природы. Ж. Кювье (1769 – 1832) создает свою «теорию катастроф», которая хоть и отвергала эволюционные идея, также внесла большой вклад в развитие биологии того времени. Были совершены три великих открытия: создание клеточной теории, открытие закона сохранения и превращения энергии и разработка Ч. Дарвином (1809 – 1882) эволюционной теории. Теория эволюции была им окончательно оформлена в труде «Происхождение видов путем естественного отбора» (1859).

Открытия, которые были сделаны в науке на рубеже XIX – XX вв. (например, было установлено, что атом не является мельчайшей частицей, что он в свою очередь имеет сложную структуру), привели к научной революции в естествознании, в ходе которой был осуществлен переход к неклассической науке. В 1900 году М. Планк ввел понятие «квант действия». Это событие поставило перед философами и физиками проблему совмещения двух представлений о материи. С одной стороны, материя рассматривалась как нечто абсолютно непрерывное. С другой стороны, было очевидно, что она состоит из дискретных частиц.

Ощутимый удар по классическому естествознания был нанесен А. Эйнштейном, который в 1905 году создал специальную, а в 1916 году общую теорию относительности. В рамках этой теории утверждается, что пространство, время неразрывно связаны с материей и друг с другом.

В 1924 г. было сделано еще одно крупное открытие. Французский физик Луи де Бройль высказал гипотезу о том. Что частице материи присущи свойства и волны (непрерывность), и дискретность (квантовость). Таким образом, был открыт важнейший закон природы, согласно которому все материальные микрообъекты обладают как корпускулярными, так и волновыми свойствами.

Один из создателей квантовой механики, немецкий физик В. Гейзенберг сформулировал соотношение неопределенностей (1927). Этот принцип устанавливает невозможность одновременно точного определения координаты микрообъекта и его импульса. Этот принцип стал фундаментальным принципом квантовой механики.

 

Основные философско-методологические выводы:

1. Возрастание роли философии в развитии естествознания и других наук. Необходимо было дать философское обоснование важнейшим открытиям в области естествознания и на этой основе разработать новую картину мира.

2. Сближение объекта и субъекта познания, зависимость знания от применяемых субъектом методов и средств его получения.

3. Укрепление и расширение идеи единства природы, повышение роли целостного и субстанционального подходов.

4. Формирование нового образа детерминизма. Введение нового понимания причинности на основе признания существования статистических закономерностей.

5. Глубокое внедрение в естествознание противоречия как существенной характеристики его объектов, как принципа их познания. Принцип дополнительности Н. Бора: для полного описания квантово-механических явлений следует применять два взаимоисключающих набора классических понятий.

6. Определяющее значение статистических закономерностей по отношению к динамическим.

7. Кардинальное изменение стиля мышления, вытеснение метафизики диалектикой в науке.

8. Изменение представлений о механизме возникновения научной теории.

Таким образом, были сформулированные основные положения неклассической науки, неклассической картины мира. Анализу постнеклассической науки будет посвящена специальная глава данного пособия.

 





Поделиться с друзьями:


Дата добавления: 2016-11-23; Мы поможем в написании ваших работ!; просмотров: 1364 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинайте делать все, что вы можете сделать – и даже то, о чем можете хотя бы мечтать. В смелости гений, сила и магия. © Иоганн Вольфганг Гете
==> читать все изречения...

2334 - | 2133 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.