Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Показатели анализа ряда динамики. Средние показатели ряда динамики.




При изучении динамики общественных ''явлений возникает проблема описания интенсивности изменения и расчета средних показателей динамики. Анализ интенсивности изменения во времени осуществляет­ся с помощью показателей, получаемых в результате сравнения уровней, к таким показателям относятся: абсолютный прирост, темп роста, темп прироста, абсолютное значение одного процен­та прироста. Система средних показателей включает средний уровень ря­да, средний абсолютный прирост, средний темп роста, средний темп прироста. Показатели анализа динамики могут вычисляться на постоянной и переменных базах сравнения. При этом принято называть сравниваемый уровень отчетным, а уровень, с которым производится сравнение, — базисным. Для расчета показателей анализа динамики на постоянной базе каждый уровень ряда сравнивается с одним и тем же ба­зисным уровнем. В качестве базисного выбирается либо началь­ный уровень в ряду динамики, либо уровень, с которого начи­нается какой-то новый этап развития явления. Исчисляемые при этом показатели называются базисными. Для расчета показателей анализа динамики на переменной базе каждый последующий уровень ряда сравнивается с преды­дущим. Вычисленные таким образом показатели анализа дина­мики называются цепными.

Важнейшим статистическим показателем анализа динамики яв­ляется абсолютный прирост (сокращение), т.е. абсолютное изменение, характеризующее увеличение или уменьшение уровня ряда за оп­ределенный промежуток времени. Абсолютный прирост с пере­менной базой называют скоростью роста.

Абсолютный прирост (цепной) -

Абсолютный прирост (базисный)-

где Уi — уровень сравниваемого периода; Уi-1— уровень предшествующего периода; У0 уровень базисного периода.

Цепные и базисные абсолютные приросты связаны между собой: сумма последовательных цепных абсолютных приростов равна базисному, т. е. общему приросту за весь промежуток вре­мени (∑∆yЦ=∆yБ). Для оценки интенсивности, т. е. относительного изменения уровня динамического ряда за какой-либо период времени ис­числяют темпы роста (снижения).

Интенсивность изменения уровня оценивается отношением отчетного уровня к базисному.

Показатель интенсивности изменения уровня ряда, выра­женный в долях единицы, называется коэффициентом роста, а в процентах — темпом роста. Эти показатели интенсивности из­менения отличаются только единицами измерения.

Коэффициент роста (снижения ) показывает, во сколько раз сравниваемый уровень больше уровня, с которым произ­водится сравнение (если этот коэффициент больше единицы) или какую часть уровня, с которым производится сравнение, составляет сравниваемый уровень (если он меньше единицы). Темп роста всегда представляет собой положительное число.

Коэффициент роста:(цепной)

Коэффициент роста: (базисный)

Темп роста (цепной):

Темп роста (базисный):

Итак, ТР Р *100

Между цепными и базисными коэффициентами роста суще­ствует взаимосвязь (если базисные коэффициенты исчислены по отношению к начальному уровню ряда динамики): произведе­ние последовательных цепных коэффициентов роста равно базис­ному коэффициенту роста за весь период (П.К£ = К%), а частное от деления последующего базисного темпа роста на предыдущий равно соответствующему цепному темпу роста.

Относительную оценку скорости измерения уровня ряда.в еди­ницу времени дают показатели темпа прироста (сокращения).

Темп прироста (сокращения) показывает, на сколько процентов сравниваемый уровень больше или меньше уровня, принятого за базу сравнения, и вычисляется как отношение абсолютного при­роста к абсолютному уровню, принятому за базу сравнения. Темп прироста может быть положительным» отрицательным или равным нулю, выражается он в процентах и долях единицы (коэффициенты прироста).

Темп прироста (цепной):

Темп прироста (базисный):

Темп прироста (сокращения) можно получить и из темпа роста, выраженного в процентах, если из него вычесть 100%. Коэффициент прироста получается вычитанием единицы из ко­эффициента роста:

При анализе динамики развития следует также знать, какие абсолютные значения скрываются за темпами роста и прироста. Сравнение абсолютного прироста и темпа прироста за одни и те же периоды времени показывает, что при снижении (замедле­нии) темпов прироста абсолютный прирост не всегда уменьша­ется, в отдельных случаях он может возрастать. Поэтому, чтобы правильно оценить значение полученного темпа прироста, его рассматривают в сопоставлении с показателем абсолютного прироста. Результат выражают показателем, который называют абсолютным значением (содержанием) одного процента прироста и рассчитывают как отношение абсолютного прироста к темпу прироста за тот же период времени, %:

Абсолютное значение одного процента прироста равно сотой части предыдущего (или базисного) уровня. Оно показывает, какое абсолютное значение скрывается за относительным пока­зателем — одним процентом прироста.В тех случаях, когда сравнение производится с отдалением периода времени, принятого за базу сравнения, рассчитывают так называемые пункты роста, которые представляют собой разность базисных темпов роста, %, двух смежных периодов.В отличие от темпов прироста, которые нельзя ни суммиро­вать, ни перемножать, пункты роста можно суммировать, в ре­зультате получаем темп прироста соответствующего периода по сравнению с базисным.

Для обобщающей характеристики динамики исследуемого явления определяют средние показатели: средние уровни ряда и средние показатели изменения уровней ряда.

СРЕДНИЕ ПОКАЗАТЕЛИ РЯДА ДИНАМИКИ характеризует обобщённую вели­чину абсолютных уровней. Он рассчитывается по средней хро­нологической, т. е. по средней исчисленной из значений, изме­няющихся во времени.

Ряд динамики (или динамический ряд) представляет собой ряд расположенных в хронологической последовательности чи­словых значений статистического показателя, характ-их изменение общественных явлений во времени. В каждом ряду динамики имеются два основных элемента: время t и конкретное значение показателя (уровень ряда). Уровни ряда это показатели, числовые значения которых составляют динамический ряд. Время — это моменты или перио­ды, к которым относятся уровни. Построение и анализ рядов динамики позволяют выявить и измерить закономерности развития общественных явлений во времени. Эти закономерности не проявляются четко на каждом конкретном уровне, а лишь в тенденции, в достаточно дли­тельной динамике. На основную закономерность динамики на­кладываются другие, прежде всего случайные, иногда сезонные влияния. Выявление основной тенденции в изменении уров­ней, именуемой трендом, является одной из главных задач ана­лиза рядов динамики. По времени, отраженному в динамических рядах, они разде­ляются на моментные и интервальные. Моментным рядом динамики называется такой ряд, уровни которого характери

Методы расчета среднего уровня интервального и моментного рядов динамики различны. Для интервальных рядов динамики из абсолютныхуровней средний уровень за период времени определяется по формуле средней арифметической: • при равных интервалах применяется средняя арифметиче­ская простая:

где у - абсолютные уровни ряда; n —число уровней ряда.

• при неравных интервалах — средняя арифметическая взве­шенная:

где У 1..... Уn — уровни ряда динамики, сохраняющиеся без изме­нения в течение промежутка времени t;

t1....tn веса, длительность интервалов времени (дней, ме­сяцев) между смежными датами.

Средний уровень моментных рядов с неравностоящими уровнями определяется по формуле средней хронологической взвешенной:

где уi, уn - уровни рядов динамики; t — интервал времени между смежными уровнями.

Использование в расчетах формулы (7.10) рассмотрим на следую­щем примере.

Обобщающий показатель скорости изменения уровней во времени — средний абсолютный прирост (убыль ), представляющий собой обобщенную характеристику индивидуальных абсолютных приростов ряда динамики. По цепным данным об абсолютных приростах за ряд лет можно рассчитать средний абсолютный при­рост как среднюю арифметическую простую:

где п - число цепных абсолютных приростов (∆у Ц) в изучаемом периоде. Средний абсолютный прирост определим через накопленный (базисный) абсолютный прирост (Ау,6). Для случая равных ин­тервалов применим следующую формулу:

где m - число уровней ряда динамики в изучаемом периоде, •' включая базисный. Сводной обобщающей характеристикой интенсивности изменения уровней ряда динамики служит средний темп роста (снижения), показывающий, во сколько раз в среднем за едини­цу времени изменяется уровень ряда динамики.

Средний темп роста (снижения) обобщенная характеристика индивидуальных темпов роста ряда динамики. В качестве основы и критерия правильности исчисления среднего темпа роста (сни­жения) применяется определяющий показатель — произведение цепных темпов роста, равное темпу роста за весь рассматривае­мый период. Следовательно, если значение признака образуется как произведение отдельных вариантов, то согласно общему пра­вилу нужно применять среднюю геометрическую.

Поскольку средний темп роста представляет собой средний коэффициент роста, выраженный в процентах (Г = К 100), то для равностоящих рядов динамики расчеты по средней геомет­рической сводятся к исчислению средних коэффициентов роста I из цепных коэффициентов роста (по щепному способу»):

где n — число цепных коэффициентов роста;

Если известны уровни динамического ряда, то расчет сред­него коэффициента роста упрощается. Так как произведение цепных коэффициентов роста равно базисному, то в подкорен­ное выражение подставляется базисный коэффициент роста. Ба­зисный коэффициент, как известно, получается непосредственно как частное от деления уровня последнего периода у„ на уровень базисного периода у0. Тогда формула для расчета среднего коэффициента роста для равностоящих рядов динамики (по «базисному способу»):

Средние темпы прироста (сокращения) рассчитываются на основе средних темпов роста, вычитанием из последних 100 %. Соответственно при исчислении средних коэффициентов прирос­та из значений коэффициентов роста вычитается единица:

где Тпр — средний темп прироста, Кпрпр средний коэффициент прироста

Если уровни ряда динамики снижаются, то средний темп роста будет меньше 100%, а средний темп прироста — отрица­тельной величиной. Отрицательный темп прироста Тпр пред­ставляет собой средний темп сокращения и характеризует сред­нюю относительную скорость снижения уровня.

Сравнительные характеристики направления и интенсивно­сти роста одновременно развивающихся во времени явлений определяются приведением рядов динамики к общему (единому) р основанию и расчетом коэффициентов опережения (отставания).

Ряды динамики (в которых возникают, например, про­блемы сопоставимости цен сравниваемых стран, методики рас­чета сравниваемых показателей и т.п.) обычно приводят к одно­му основанию, если они не могут быть решены другими метода-f ми. По исходным уровням нескольких рядов динамики определяют относительные величины — базисные темпы роста или прироста. Принятый при этом за базу сравнения период време­ни (дата) выступает в качестве постоянной базы расчетов тем­пов роста для каждого из изучаемых рядов динамики. В зависи­мости от целей исследования базой может быть начальный, средний или другой уровень ряда.

Сравнение интенсивности изменений уровней рядов во вре­мени возможно с помощью коэффициентов опережении (отставания) представляющих собой отношение базисных темпов роста (или при­роста) двух рядов динамики за одинаковые отрезки времени:

где Т’р, Т'пр, Т’’р, Т’’пр ~ базисные темпы роста и прироста первого и второго рядов динамики (соответственно).

Коэффициенты опережения (отставания ) могут быть исчислены на основе сравнения средних темпов роста (или прироста) двух ди­намических рядов за одинаковый период времени:

где Тр", Тр"п - средние темпы роста первого и второго ря­дов динамики соответственно; я — число лет в периоде.

Коэффициент опережения (отставания) показывает, во сколько раз быстрее растет (отстает) уровень одного ряда динамики по сравнению с другим. При этом сравнении темпы должны характе­ризовать тенденцию одного направления.

7. Методы сглаживания рядов динамики. Одной из важнейших задач статистики является определение в рядах динамики общей тенденции развития явления В некоторых случаях закономерность изменения явления, общая тенденция его развития явно и отчетливо отражается уровнями динамического ряда (уровни на изучаемом периоде непрерывно растут или непрерывно снижаются).Однако часто приходится встречаться с такими рядами ди­намики, в которых уровни ряда претерпевают самые различные изменения (то возрастают, то убывают), и общая тенденция раз­вития неясна.На развитие явления во времени оказывают влияние факто­ры, различные по характеру и силе воздействия. Одни из них оказывают практически постоянное воздействие и формируют в рядах динамики определенную тенденцию развития. Воздействие же других факторов может быть кратковременным или носить случайный характер. Поэтому при анализе динамики речь идет не просто о тен­денции развития, а об основной тенденции, достаточно стабиль­ной (устойчивой) на протяжении изученного этапа развития.

Основной тенденцией развития (трендом) называется плавное и устойчивое изменение уровня явления во времени, свободное от случайных колебаний.

Задача состоит в том, чтобы выявить общую тенденцию в изменении уровней ряда, освобожденную от действия различ­ных случайных факторов. С этой целью ряды динамики подвергаются обработке методами укрупнения ин­тервалов, скользящей средней и аналитического выравнивания.

* Одним из наиболее простых методов изучения основной тенденции в рядах динамики является укрупнение интервалов. Он основан на укрупнении периодов времени, к которым отно­сятся уровни ряда динамики (одновременно уменьшается коли­чество интервалов). Например, ряд ежесуточного выпуска про­дукции заменяется рядом месячного выпуска продукции и т.д. Средняя, исчисленная по укрупненным^ интервалам, позволяет выявлять направление и характер (ускорение или замедление роста) основной тенденции развития.

* Выявление основной тенденции может осуществляться также методом скользящи (подвижной) средней. Сущность его заключается в том, что исчисляется средний уровень из опреде­ленного числа, обычно нечетного (3, 5, 7 и т.д.), первыхтю сче­ту уровней ряда, затем — из такого же числа уровней, но начи­ная со второго по счету, далее — начиная с третьего и т.д. Таким образом, средняя как бы «скользит» по ряду динамики, пере­двигаясь на один срок.

на два члена в начале и конце ряда. Он меньше, чем фактиче­ский подвержен колебаниям из-за случайных причин, и четче, в виде некоторой плавной линии на графике, выражает основную тенденцию роста урожайности за изучаемый период, связанную с действием долговременно существующих причин и условий развития.

Недостатком сглаживания ряда является «укорачивание» сглаженного ряда по сравнению с фактическим, а следователь­но, потеря информации.

Рассмотренные приемы сглаживания динамических рядов (укрупнение интервалов и метод скользящей средней) дают воз­можность определить лишь общую тенденцию развития явле­ния, более или менее освобожденную от случайных и волнооб­разных колебаний. Однако получить обобщенную статистиче­скую модель тренда посредством этих методов нельзя.

* Для того чтобы дать количественную модель, выражающую основную тенденцию изменения уровней динамического ряда во вре­мени, используется аналитическое выравнивание ряда динамики.

Основным содержанием метода аналитического выравнива­ния в рядах динамики является то, что общая тенденция разви­тия рассчитывается как функция времени:

где yt — уровни динамического ряда, вычисленные по соответст­вующему аналитическому уравнению на момент времени t.

Определение теоретических (расчетных) уровней yt произ­водится на основе так называемой адекватной математической модели, которая наилучшим образом отображает (аппроксимиру­ет) основную тенденцию ряда динамики. Выбор типа модели зависит от цели исследования и должен быть основан на теоретическом анализе, выявляющем характер развития явления, а также на графическом изображении ряда динамики (линейной диаграмме).

Например, простейшими моделями (формулами), выражаю­щими тенденцию развития, являются:

линейная функция — прямая yt = a0 + a1t,

где a0,a1 параметры уравнения; t — время;

показательная функция yt = A0A1t

степенная функция - кривая второго порядка (парабола)

В тех случаях, когда требуется особо точное изучение тен­денции развития (например, модели тренда для прогнозирова­ния), при выборе вида адекватной функции можно использовать специальные критерии математической статистики.

Расчет параметров функции обычно производится методом наименьших квадратов, в котором в качестве решения принима­ется точка минимума суммы квадратов отклонений между тео­ретическими и эмпиричесими уровнями:

где yt - выравненные (расчетные) уровни; yt - фактические уровни.

Параметры уравнения а,-, удовлетворяющие этому условию, могут быть найдены решением системы нормальных уравнений. На основе найденного уравнения тренда вычисляются выравненные уровни. Таким образом, выравнивание ряда динамики заключается в замене фактических уровней у,- плавно изменяю­щимися уровнями У(, наилучшим образом аппроксимирующилми статистические данные.

Выравнивание по прямой используется, как правило, в тех случаях, когда абсолютные приросты практически постоянны, т. е. когда уровни изменяются в арифметической прогрессии (или близко к ней).

Выравнивание по показательной функции используется в тех случаях, когда ряд отражает развитие в геометриче­ской прогрессии, т. е. когда цепные коэффициенты рос­та практически постоянны.

Рассмотрим «технику» выравнивания ряда динамики по прямой: yt=a0+a1t

Параметры а0, а1согласно методу наименьших квадратов находятся решением следующей системы нор­мальных уравнений, полученной путем алгебраического преобразования условия

где у - фактические (эмпирические) уровни ряда; t - время (порядковый номеа периода или момента времени).

В обоих случаях ∑ t = 0, так что система нормальных урав­нений принимает вид:

Из первого уравнения

Из второго уравнения





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 2037 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2308 - | 2101 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.