Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Модели элементов энергосистем




Математической моделью физического объекта является система уравнений, описывающая процессы в нём, или электрическая схема замещения (для электроэнергетического или электротехнического объекта), которой также соответствует система дифференциальных или алгебраических уравнений. Схема электрической сети представляет собой набор схем замещения составляющих элементов, соединённых в соответствии со структурой схемы энергосистемы.

Универсальных моделей не существует; они зависят от назначения расчётов. В модели выделяют те свойства объекта, которые доминируют в рассматриваемом процессе и пренебрегают свойствами, мало влияющими на результаты расчётов. В этом разделе рассматриваются модели элементов энергосистемы, используемые для расчёта токов КЗ, но они не могут использоваться, например, для расчётов потерь в сети.

При построении схем замещения элементов для расчёта тока КЗ вводится ряд допущений, основными из которых являются:

· линейность параметров элементов, что позволяет широко использовать удобные линейные преобразования;

· пренебрежение активными сопротивлениями элементов (на промышленной частоте активное сопротивление всех элементов энергосистем значительно меньше индуктивного сопротивления, поэтому, если это специально не оговаривается, то активным сопротивлением элементов энергосистем пренебрегают); вследствие чего значения токов КЗ получают несколько завышенными, т.е. с некоторым запасом.

Синхронный генератор. Условное изображение трёхфазного синхронного генератора и схема замещения его представлены на рис.1.1.

 

Рис. 1.1 Условное изображение и схема замещения синхронного генератора

В течение переходного режима ЕДС генератора и его внутреннее сопротивление непрерывно изменяются.

Для расчёта ТКЗ в начальный момент времени генератор должен быть представлен сверхпереходной ЭДС по поперечной оси и сверхпереходным сопротивлением по продольной оси . Термин "сверхпереходный" означает, что при определении параметра учтены все свободные токи статора и ротора (рис.1.2): в обмотке возбуждения (ОВ) и демпферных обмотках по продольной (d) и поперечной (q) осям (ДО), и обозначается верхним индексом - два штриха (''). Переходный процесс наступает либо после затухания свободных токов в ДО, либо при отсутствии ДО в гидрогенераторе в момент КЗ. В турбогенераторе роль ДО играет массивный ротор.

Рис.1.2 Ротор синхронного генератора с демпферными обмотками

Для расчётов токов КЗ в сверхпереходном режиме для генераторов задаются: активная мощность (иногда полная ), номинальное напряжение на выводах генератора , сверхпереходные относительные номинальные ЭДС и сопротивление , коэффициент мощности . Параметры синхронных генераторов приведены в приложении 1.

Сверхпереходные сопротивления по продольной оси в справочной литературе приводятся в относительных номинальных единицах, а их величины находятся в диапазоне 0,11 0,25. Коэффициент мощности составляет 0,8 0,9. С увеличением номинальной мощности генераторов , и , как правило, увеличиваются.

Типовые турбогенераторы, выпускаемые в нашей стране, имеют следующие номинальные мощности ():

2,5; 4,0; 6,0; 12, 32, 50, 63, 100, 160, 200, 300, 500, 800, 1000, 1200 МВт;

и номинальные напряжения (линейные):

3,15; 6,3; 10,5; 13,8; 15,75; 18; 20; 24 кВ.

(в результате модернизации в некоторых генераторах мощность увеличена по сравнению с приведенной выше).

Если ЭДС генератора в сверхпереходном (переходном) режиме неизвестна, то её можно определить из предшествующего режима работы; остаётся неизменной в первый момент КЗ. ЭДС превышает напряжение на зажимах генератора на величину падения напряжения на его внутреннем сопротивлении (). В частности, относительная номинальная ЭДС для расчёта сверхпереходного тока () может быть определена из выражения

, (1.11)

где , – относительные номинальные напряжение на выводах и ток генератора в режиме, предшествующем КЗ. ЭДС генератора в именованных единицах

. (1.12)

Силовой трансформатор. Условное изображение двухобмоточного трансформатора и его схема замещения приведены на рис.1.3. При вычислении токов КЗ намагничивающими токами трансформаторов пренебрегают. При расчёте токов трёхфазных КЗ и в симметричных режимах соединение обмоток трансформаторов допускается не указывать.

Рис.1.3 Условное изображение и схема замещения двухобмоточного

Трансформатора

В справочной литературе для двухобмоточных трансформаторов задаются: полная мощность , напряжения обмоток высокого () и низкого () напряжений (или первичной ()и вторичной () обмоток, напряжение короткого замыкания в процентах , или относительных единицах .

Напряжение короткого замыкания трансформатора определяется из опыта КЗ при пониженном напряжении и номинальном токе. Оно связано с относительным номинальным сопротивлением трансформатора выражением:

. (1.13)

Индуктивное сопротивление трансформатора определяется потоками рассеяния. С увеличением номинального напряжения, увеличиваются расстояние между обмотками и потоки рассеяния, следовательно, и индуктивное сопротивление.

Трёхфазные трансформаторы, выпускаемые в нашей стране, мощностью более 10 МВА имеют следующие номинальные мощности ():

16, 25, 32, 40, 63, 100, 125, 200, 250, 320, 400, 500, 630, 800, 1000 МВА.

Условное изображение трёхобмоточного трансформатора и автотрансформатора, а также их схема замещения, представляющая трёхлучевую звезду, приведены на рис.1.4.

Для трёхобмоточных трансформаторов (и автотрансформаторов) задаются следующие параметры: номинальная мощность , напряжения обмоток высокого (), среднего () и низкого () напряжений, три напряжения короткого замыкания для каждой пары обмоток: , , . Для автотрансформаторов в каталогах приводятся напряжения КЗ, приведенные к проходной мощности .

Рис.1.4 Условные изображения и схема замещения автотрансформатора и





Поделиться с друзьями:


Дата добавления: 2016-11-19; Мы поможем в написании ваших работ!; просмотров: 463 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лаской почти всегда добьешься больше, чем грубой силой. © Неизвестно
==> читать все изречения...

2390 - | 2261 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.