Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Аддитивные цветовые модели




Аддитивная модель описывает излучаемый свет. Аддитивный цвет получается путем соединения лучей света разных цветов. В основе этого явления лежит тот факт, что большинство цветов видимого спектра могут быть получены путем смешивания в различных пропорциях трех основных цветовых компонент. Этими компонентами, которые в теории цвета иногда называются первичными цветами, являются красный (R ed), зеленый (G reen) и синий (В lue) цвета. При попарном смешивании первичных цветов образуются вторичные цвета: голубой (С yan), пурпурный (M agenta) и желтый (Y ellow). Следует отметить, что первичные и вторичные цвета относятся к базовым цветам.

Базовыми цветами называют цвета, с помощью которых можно получить практически весь спектр видимых цветов.

Изменяя интенсивность свечения цветных точек, можно создать большое многообразие оттенков. Таким образом, цвет получается путем сложения первичных цветов.

Цветовая модель RGB

Это одна из наиболее распространенных и часто используемых моделей. Она применяется в приборах, излучающих свет, таких, например, как мониторы, прожекторы, фильтры и другие подобные устройства.

Данная цветовая модель базируется на трех основных цветах: Red — красном, Green — зеленом и Blue — синем. Каждая из вышеперечисленных составляющих может варьироваться в пределах от 0 до 255, образовывая разные цвета и обеспечивая, таким образом, доступ ко всем 16 миллионам. При работе с графическим редактором можно выбирать цвет, полагаясь не только на тот, что мы видим, но при необходимости указывать и цифровое значение, тем самым иногда, особенно при цветокоррекции, контролируя процесс работы.

Поскольку в модели используются три независимых значения, ее можно представить в виде трехмерной системе координат. Каждая координата отражает вклад соответствующей в конкретный цвет в диапазоне от нуля до максимального значения. В результате получается некий куб, внутри которого и находится все цвета, образуя цветовое пространство модели RGB.

Данная цветовая модель считается аддитивной, то есть при увеличении яркости отдельных составляющих будет увеличиваться и яркость результирующего цвета: если смешать все три цвета с максимальной интенсивностью, то результатом будет белый цвет; напротив, при отсутствии всех цветов получается черный. При наложении отдельных каналов результат получается не совсем такой, как если бы смешивались краски, поэтому для того, чтобы внести ясность, остановимся на каждом из сочетаний подробнее. При смешении красного и зеленого результатом будет желтый. Зеленого и синего — голубой, что ближе результату, получаемому на палитре. Синего и красного — фиолетовый, причем при изменении пропорций смешиваемых цветов можно получать как розовые, так и пурпурные оттенки.

Несомненными достоинствами данного режима является то, что он позволяет работать со всеми 16 миллионами цветов, а недостаток состоит в том, что при выводе изображения на печать часть из этих цветов теряется, в основном самые яркие и насыщенные, также возникает проблема с синими цветами.

Субтрактивная модель

Данный вид модели описывает отражаемые цвета. Цвета образуются путем вычитания из белого цветов основных аддитивных цветов модели RGB.

Цвета, использующие белый свет, вычитая из него определенные участки спектра называются субтрактивными. Основные цвета этой модели: голубой (белый минус красный), фуксин (в некоторых книгах его называют пурпурным) (белый минус зеленый) и желтый (белый минус синий). Эти цвета являются полиграфической триадой и могут быть легко воспроизведены полиграфическими машинами. При смешение двух субтрактивных цветов результат затемняется (в модели RGB было наоборот). При нулевом значении всех компонент образуется белый цвет (белая бумага). Эта модель представляет отраженный цвет, и ее называют моделью субтрактивных основных цветов. Данная модель является основной для полиграфии и также является аппаратно—зависимой.

Цветовая модель CMYK

Это еще одна из наиболее часто используемых цветовых моделей, нашедших широкое применение. Она, в отличие от аддитивной RGB, является субтрактивной моделью.

Модель CMYK (Cyan Magenta Yellow Key, причем Key означает черный цвет) — является дальнейшим улучшением модели CMY и уже четырехканальной. Поскольку реальные типографские краски имеют примеси, их цвет не совпадает в точности с теоретически рассчитанным голубым, желтым и пурпурным. Особенно трудно получить из этих красок черный цвет. Поэтому в модели CMYK к триаде добавляют черный цвет. Почему—то в названии цветовой модели черный цвет зашифрован как K (от слова Key — ключ). Модель CMYK является «эмпирической», в отличие от теоретических моделей CMY и RGB. Модель является аппаратно—зависимой.

Основные цвета в субтрактивной модели отличаются от цветов аддитивной. Cyan — голубой, Magenta — пурпурный, Yellow — желтый. Так как при смешении всех вышеперечисленных цветов идеального черного не получится, то вводится еще один дополнительный цвет — черный, который позволяет добиваться большей глубины и используется при печати прочих черных (как, например, обычный текст) объектов.

Цвета в рассматриваемой цветовой модели были выбраны такими не случайно, а из—за того, что голубой поглощает лишь красный, пурпурный — зеленый, желтый — синий.

В отличие от аддитивной модели, где отсутствие цветовых составляющих образует черный цвет, в субтрактивной все наоборот: если нет отдельных компонентов, то цвет белый, если они все присутствуют, то образуется грязно—коричневый, который делается более темным при добавлении черной краски, которая используется для затемнения и других получаемых цветов. При смешивании отдельных цветовых составляющих можно получить следующие результаты:

Голубой + Пурпурный = Синий с оттенком фиолетового, который можно усилить, изменив пропорции смешиваемых цветов.

Пурпурный + Желтый = Красный. В зависимости от соотношения входящих в него составляющих он может быть преобразован в оранжевый или розовый.

Желтый + Голубой = Зеленый, который может быть преобразован при использовании тех же первичных цветов как в салатовый, так и в изумрудный.

Следует помнить, что если вы готовите изображение к печати, то следует все—таки работать с CMYK, потому что в противном случае то, что вы увидите на мониторе, и то, что получите на бумаге, будет отличаться настолько сильно, что вся работа может пойти насмарку.

Модель CMYK — это субтрактивная цветовая модель, которая описывает реальные красители, используемые в полиграфическом производстве.

Перцепционные модели

Для устранения аппаратной зависимости был разработан ряд перцепционных моделей. В их основу заложено раздельное определение яркости и цветности. Такой подход обеспечивает ряд преимуществ:

− позволяет обращаться с цветом на интуитивно понятном уровне;

− значительно упрощает проблему согласования цветов, поскольку после установки значения яркости можно заняться настройкой цвета.

Прототипом всех цветовых моделей, использующих концепцию разделения яркости и цветности, является НSV—модель. К другим подобным системам относятся НSI, НSB, НSL и YUV. Общим для них является то, что цвет задается не в виде смеси трех основных цветов — красного, синего и зеленого, а определяется путем указания двух компонентов: цветности (цветового тона и насыщенности) и яркости.

 

HSV/ HSB

HSV — цветовая модель, содержащая компоненты тона (цвет, как синий или красный), насыщенности (интенсивность цвета) и яркости.

Модель RGB очень подходит для компьютерных экранов, но она не позволяет описать всё, что мы видим: светло-зелёный, бледно-розовый, ярко-красный и т.д. Модель HSV принимает это во внимание. Обе модели не полностью независимы друг от друга. Вы можете это заметить в инструменте «Выбор цвета»; когда вы изменяете цвет в одной модели, значение цвета в другой модели также меняется.

· Тон: Сам цвет — результат наложения основных цветов. Все оттенки (кроме серого) показаны на хроматическом круге: жёлтый, синий, а также фиолетовый, оранжевый, и т.п. Значения в хроматическом круге (или «цветовое колесо») могут быть от 0° до 360°. (Термин «Цвет» часто используется вместо «Тона». Цвета RGB - «основные цвета».)

· Насыщенность: Определяет бледность цвета. Полностью ненасыщенный цвет становится просто оттенком серого. Полностью насыщенный цвет становится чистым цветом. Значение насыщенности может быть от 0 до 100, от белого до чистого цвета.

· Яркость: Определяет световую интенсивность. Это количество света, испускаемого цветом. Яркость изменяется, когда, на пример, цветной объект перенести из тени на солнце. Значение яркости может быть от 0 до 100. Значения точек на экране - тоже значения яркости: «Яркость» в цветовой модели HSV есть векторная сумма элементарных значений в модели RGB.

LAB

 

Модель Lab является аппаратно-независимой моделью. Эта модель аппаратно независима, поскольку описывает цвета так, как они воспринимаются человеком, точнее "стандартным наблюдателем ". Ее приняли за стандарт. Цветовая модель Lab, использующаяся в компьютерной графике, является производной от цветовой модели XYZ. Название она получила от своих базовых компонентов L, a и b. Компонент L несет информацию о яркостях изображения, а компоненты а и b - о его цветах (т. е. a и b - хроматические компоненты). Компонент а изменяется от зеленого до красного, а b - от синего до желтого. Яркость в этой модели отделена от цвета, что удобно для регулирования контраста, резкости и т.д. Однако, будучи абстрактной и сильно математизированной.

Поскольку все цветовые модели являются математическими, они легко конвертируются одна в другую по простым формулам. Такие конверторы встроены во все "приличные" графические программы.

 

Системы координат

 

Система координат — комплекс определений, реализующий метод координат, то есть способ определять положение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки.

Положение любой точки P в пространстве (в частности, на плоскости) может быть определено при помощи той или иной системы координат. Числа, определяющие положение точки, называются координатами этой точки.

Наиболее употребительные координатные системы - декартовы прямоугольные.

Кроме прямоугольных систем координат существуют косоугольные системы. Т.к. я не встречал примеров применения косоугольных систем, то я их не рассматриваю. Прямоугольные и косоугольные координатные системы объединяются под названием декартовых систем координат.

Декартовы косоугольные (афинные) координаты

Иногда на плоскости применяют полярные системы координат, а в пространстве - цилиндрические или сферические системы координат.

Обобщением всех перечисленных систем координат являются криволинейные системы координат.

Рис. 1: Классификация систем координат





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 2977 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Что разум человека может постигнуть и во что он может поверить, того он способен достичь © Наполеон Хилл
==> читать все изречения...

2510 - | 2325 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.