Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Генетический аппарат бактерий (хромосомы, плазмиды) характеристика бактериальных транспозонов. Биологическая роль плазмид.




Материальной основой наследственности, определяющей ге­нетические свойства всех организмов, в том числе бактерий и виру­сов, является ДНК. Исключение составляют только РНК-содержащие вирусы, у которых генетическая информация закодирована в РНК. Од­нако в отличие от хромосомы эукариот гены прокариот организованы в более простую структуру, представляющую собой молекулу ДНК, часто замкнутую в кольцо. Молекулярная масса ДНК у бактерий срав­нительно велика: у Е. coli она равна 2 • 109.

Наряду с описанной структурой, называемой бактериальной хро­мосомой, или нуклеоидом, генетический материал у бактерий содер­жится во внехромосомных генетических элементах — плазмидах, которые могут находиться в автономном состоянии в цитоплазме клетки.

Гены, ответственные за синтез того или иного соединения, при­нято обозначать строчными буквами латинского алфавита, соответ­ствующими названию данного соединения со знаком «+». Например, his+ — гистидиновый ген, leu++ — лейциновый ген и т.д. Гены, кон­тролирующие резистентность к лекарственным препаратам, фагам. ядам, обозначают буквой г (resistent — резистентный). Например, резистентность к стрептомицину записывается знаком strr, а чувстви­тельность str. Фенотип бактерий обозначают теми же знаками, что и генотип, но с прописной буквы.

Генотип микроорганизмов представлен совокупностью генов, определяющих его потенциальную способность к фенотипическому выражению записанной в них информации в виде определенных при­знаков. Условия окружающей среды способствуют проявлению (экс­прессии) генов или, наоборот, подавляют их функциональную актив­ность, выраженную в образовании определенных ферментов. У бак­терий, имеющих определенный набор генов, функцию каждого из них определяют не прямым, а косвенным путем на основании изменения или утраты соответствующего признака при утрате какого-либо уча­стка ДНК. Таким образом, заключение о функции гена делают на основании результатов сравнительного изучения признака присущего исходному генотипу и штамму с мутировавшим геном. В генетичес­ких исследованиях мутировавшие гены служат маркерами,которые дают возможность судить об их передаче и функционирова­нии. Сцепленность таких маркеров с другими генами устанавливает­ся путем их передачи от донорных к реципиентным клеткам в опы­тах трансформации трансдукции и конъюгации. Это позволяет уста­новить их локализацию на бактериальной хромосоме и составить генетическую карту.

ВНЕХРОМОСОМНЫЕ ФАКТОРЫ НАСЛЕДСТВЕННОСТИ

Внехромосомные факторы наследственности входят в состав многих микроорганизмов, особенно бактерий. Они представлены плаз-мидами, транспозонами и Is-последовательностями (англ. insertion — вставка, sequence — последовательность), которые являются молеку­лами ДНК, отличающимися друг от друга молекулярной массой, объе­мом закодированной в них информации, способностью к автономной репликации и другими признаками.

Плазмиды, транспозоны и Is-последовательности не являются генетическими элементами, жизненно необходимыми для бактериаль-ной клетки, поскольку они не несут информации о синтезе фермен-тов, участвующих в пластическом или энергетическом метаболизме. вместе с тем они могут придавать бактериям определенные селек­тивные преимущества, например резистентность к антибиотикам.

Плазмиды физически либо не связаны с хромосомой (автономное состояние), либо встроены в ее состав (интегрированное состояние). В автономном состоянии они самостоятельно реплицируются. Транс-позоны и Is-последовательности во всех случаях связаны с хромосо­мой и не способны к самостоятельной репликации.

Плазмиды

Плазмиды несут две функции — регуляторную и кодирующую. Первая состоит в компенсации нарушений ме­таболизма ДНК клетки хозяина. Например, при интегрировании плаз­миды в состав поврежденного бактериального генома, не способного к репликации его функция восстанавливается за счет плазмидного реп-ликона.

Кодирующая функция плазмид состоит во внесении в бактери­альную клетку новой информации, о которой судят по приобретенно­му признаку, например образованию пилей (F-плазмида), резистент-ности к антибиотикам (R-плазмида), выделению бактериоцинов (Col-плазмида) и т.д.

Переход плазмиды в автономное состояние и реализация запи­санной в ней информации часто связаны с индуцирующими воздей­ствиями внешней среды. В некоторых случаях продукты плазмидных генов могут способствовать выживанию несущих их бактерий. Само­стоятельная репликация плазмидной ДНК способствует ее сохране­нию и распространению в потомстве. Встраивание плазмид, так же как и профагов, происходит только в гомологичные участки бактери­альной хромосомы, в то время как Is-последовательностей и транс-позонов — в любой ее участок.

Перенос генетического материала (ДНК) детерминируется tra- опероном F-плазмиды (от англ. transfer — перенос), обеспечивающим ее конъюгативность. F-плазмиду можно удалить (элиминировать) изклетки, обработав последнюю некоторыми веществами, например акридиновым оранжевым, в результате чего клетки теряют свойствэ донора. Сравнительно легкая элиминация и очень быстрая и эффец. тивная передача F-плазмиды реципиентным клеткам дали основание считать, что она располагается в цитоплазме бактерий вне хромосо. мы. Однако F-плазмида может встраиваться в бактериальную хромо. сому и находиться с ней в интегрированном состоянии.

R-плазмиды. Известно большое количество R-плазмид, определяющих устойчивость бактерий-хозяев к разнообразным лекарствен-ным препаратам. Передача R-плазмид от одних бактерий к другим привела к их широкому распространению среди патогенных и услов-но-патогенных бактерий, что чрезвычайно осложнило химиотерапии вызываемых ими заболеваний.

R-плазмиды имеют сложное молекулярное строение. В их состав входят: r-ген, который может содержать более мелкие мигрирующие элементы — Is-последовательности, транспозоны и /га-опероны.

Плазмиды биодеградации. Данные плазмиды несут информацию об утилизации некоторых органических соединений, которые бакте-РИи используют в качестве источников углевода и энергии. Они могут играть важную роль в экологии патогенных бактерий, обеспечи-

вая им селективные преимущества во время пребывания в объектах окружающей среды и в организме человека. Например, урологические штаммы кишечных палочек содержат плазмиду гидролизациц мочевины.

Плазмиды биодеградации несут информацию об утилизации ряда Сахаров (лактоза, сахароза, рафиноза и др.) и образовании протеолитических ферментов.

Транспозоны

Транспозоны представляют собой нуклеотидные последова­тельности, включающие от 2000 до 20 500 пар нуклеотидов, которые несут генетическую информацию, необходимую для транспозиции. При включении в бактериальную ДНК они вызывают в ней дуплика­ции, а при перемещении — делеции и инверсии. Транспозоны могут находиться в свободном состоянии в виде кольцевой молекулы, не­способной к репликации. Она реплицируется только в составе бакте­риальной хромосомы. При этом новые копии транспозонов могут миг­рировать в некоторые плазмиды и ДНК фагов, которые, проникая в бактериальные клетки, способствуют их распространению в популя­ции. Таким образом, важнейшим свойством транспозонов является их способность к перемещению с одного репликона (хромосомная ДНК) на другой (плазмида) и наоборот. Кроме того, некоторые транс­позоны, так же как и плазмиды, выполняют регуляторную и кодиру­ющую функции. В частности, они могут нести информацию для син­теза бактериальных токсинов, а также ферментов разрушающих или модифицирующих антибиотики.

Транспозоны имеют особые концевые структуры нескольких типов, которые являются маркерами, позволяющими отличать их от других фрагментов ДНК. Это позволило обнаружить их не только у бактерий и дрожжей, но и в клетках растений, насекомых, позвоночных живот­ных и человека. При интеграции транспозонов в хромосому клеток животных или человека они приобретают удивительное сходство с провирусами, находящимися в составе их хромосом.

Ls-последовательности

Is-последовательности представляют собой транспозируемые элемен­ты, которые также называются «вставки последовательностей осно­ваний». Это фрагменты ДНК длиной 1000 пар нуклеотидов и более. В Is-последовательностях содержится информация, необходимая только для их транспозиции, т.е. перемещения в различные участки

ДНК.

Вследствие такого рода перемещений Is-последовательности могут выполнять ряд функций.

1. Координировать взаимодействие транспозонов, плазмид и уме-енных фагов как между собой, так и с хромосомой бактериальной летки и обеспечивать их рекомбинацию.

2. Вызывать инактивацию гена, в которой произошла интеграция ^-последовательности («выключение» гена), либо, будучи встроен­ными в определенном положении в бактериальную хромосому, слу­жить промотором (участками ДНК, регулирующих экспрессию под­лежащих структурных генов бактерий-реципиентов), который вклю­чает или выключает транскрипцию соответствующих генов, выполняя регуляторную функцию.

3. Индуцировать мутации типа делеций или инверсий при пере­мещении и дупликации в 5-9 парах нуклеотидов при включении в бактериальную хромосому.

В свободном состоянии Is-последовательности не обнаружены, что свидетельствует об их неспособности реплицироваться само­стоятельно.





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 1339 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2298 - | 2049 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.