В настоящее время известно более двухсот a -активных ядер, главным образом тяжелых (А> 200, Z >82). Только небольшая группа a -активных ядер приходится на область с А = 140 ¸160 (редкие земли). a -Распад подчиняется правилу смещения (256.4). Примером a -распада служит распад изотопа урана 238U с образованием Th:
Скорости вылетающих при распаде a --частиц очень велики и колеблются для разных ядер в пределах от 1,4×107 до 2×107 м/с, что соответствует энергиям от 4 до 8,8 МэВ. Согласно современным представлениям, a -частицы образуются в момент радиоактивного распада при встрече движущихся внутри ядра двух протонов и двух нейтронов.
a -Частицы, испускаемые конкретным ядром, обладают, как правило, определенной энергией. Более тонкие измерения, однако, показали, что энергетический спектр a -частиц, испускаемых данным радиоактивным элементом, обнаруживает «тонкую структуру», т. е. испускается несколько групп a -частиц, причем в пределах каждой группы их энергии практически постоянны. Дискретный спектр a -частиц свидетельствует о том, что атомные ядра обладают дискретными энергетическими уровнями.
Для a -распада характерна сильная зависимость между периодом полураспада T 1/2 и энергией Е вылетающих частиц. Эта взаимосвязь определяется эмпирическим законом Гейгера — Нэттола (1912)*, который обычно выражают в виде зависимости между пробегом Ra (расстоянием, проходимым частицей в веществе до ее полной остановки) a -частиц в воздухе и постоянной радиоактивного распада l: (257.1)
где А и В— эмпирические константы, l = (ln 2)/ T 1/2. Согласно (257.1), чем меньше период полураспада радиоактивного элемента, тем больше пробег, а следовательно, и энергия испускаемых им a -частиц. Пробег a -частиц в воздухе (при нормальных условиях) составляет несколько сантиметров, в более плотных средах он гораздо меньше, составляя сотые доли миллиметра (a -частицы можно задержать листом бумаги). Явление b –-распада (в дальнейшем будет показано, что существует и b +-распад) подчиняется правилу смещения (256.5) и связано с выбросом электрона. Пришлось преодолеть целый ряд трудностей с трактовкой b –-распада.
Во-первых, необходимо было обосновать происхождение электронов, выбрасываемых в процессе b –-распада. Протонно-нейтронное строение ядра исключает возможность вылета электрона из ядра, поскольку в ядре электронов нет. Предположение же, что электроны вылетают не из ядра, а из электронной оболочки, несостоятельно, поскольку тогда должно было бы наблюдаться оптическое или рентгеновское излучение,что не подтверждают эксперименты.
Во-вторых, необходимо было объяснить непрерывность энергетического спектра испускаемых электронов (типичная для всех изотопов кривая распределения b –-частиц по энергиям приведена на рис. 343). Каким же образом b –-активные ядра, обладающие до и после распада вполне определенными энергиями, могут выбрасывать электроны со значениями энергии от нуля до некоторого максимального E mах? Т.е. энергетический спектр испускаемых электронов является непрерывным? Гипотеза о том, что при b –-распаде электроны покидают ядро со строго определенными энергиями, но в результате каких-то вторичных взаимодействий теряют ту или иную долю своей энергии, так что их первоначальный дискретный спектр превращается в непрерывный, была опровергнута прямыми калориметрическими опытами. Так как максимальная энергия E mахопределяется разностью масс материнского и дочернего ядер, то распады, при которых энергия электрона Е< E mах,как бы протекают с нарушением закона сохранения энергии. Н. Бор даже пытался обосновать это нарушение, высказывая предположение, что закон сохранения энергии носит статистический характер и выполняется лишь в среднем для большого числа элементарных процессов. Отсюда видно, насколько принципиально важно было разрешить это затруднение.
В-третьих, необходимо было разобраться с несохранением спина при b –-распаде. При b –-распаде число нуклонов в ядре не изменяется (так как не изменяется массовое число А), поэтому не должен изменяться и спин ядра, который равен целому числу при четном А и полуцелому при нечетном А. Однако выброс электрона, имеющего спин , должен изменить спин ядра на величину Последние два затруднения привели В. Паули к гипотезе (1931) о том, что при b –-распаде вместе с электроном испускается еще одна нейтральная частица — нейтрино. Нейтрино имеет нулевой заряд, спин 1/2 (в единицах ) и нулевую (а скорее <10–4 тe) массу покоя; обозначается . Впоследствии оказалось, что при b –-распаде испускается не нейтрино, а антинейтрино (античастица по отношению к нейтрино; обозначается ).
Экспериментально установлено, что g -излучение (см. § 255) не является самостоятельным видом радиоактивности, а только сопровождает a - и b -распады и также возникает при ядерных реакциях, при торможении заряженных частиц, их распаде и т. д. g -Спектр является линейчатым. g -Спектр — это распределение числа g -квантов по энергиям (такое же толкование b -спектра дано в §258). Дискретность g -спектра имеет принципиальное значение, так как является доказательством дискретности энергетических состояний атомных ядер.
В настоящее время твердо установлено, что g -излучение испускается дочерним (а не материнским) ядром. Дочернее ядро в момент своего образования, оказываясь возбужденным, за время примерно 10–13—10–14 с, значительно меньшее времени жизни возбужденного атома (примерно 10–8 с), переходит в основное состояние с испусканием g -излучения. Возвращаясь в основное состояние, возбужденное ядро может пройти через ряд промежуточных состояний, поэтому g -излучение одного и того же радиоактивного изотопа может содержать несколько групп g -квантов, отличающихся одна от другой своей энергией.
При g -излучении А и Z ядра не изменяются, поэтому оно не описывается никакими правилами смещения. g -Излучение большинства ядер является столь коротковолновым, что его волновые свойства проявляются весьма слабо. Здесь на первый план выступают корпускулярные свойства, поэтому g -излучение рассматривают как поток частиц — g -квантов. При радиоактивных распадах различных ядер g -кванты имеют энергии от 10 кэВ до 5 МэВ.
Ядро, находящееся в возбужденном состоянии, может перейти в основное состояние не только при испускании g -кванта, но и при непосредственной передаче энергии возбуждения (без предварительного испускания g -кванта) одному из электронов того же атома. При этом испускается так называемый электрон конверсии. Само явление называется внутренней конверсией. Внутренняя конверсия — процесс, конкурирующий с g -излучением.