Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Графическое изображение электростатического поля.




Электростатическое поле удобно изображать графически с помощью силовых линий и эквипотенциальных поверхностей.

Силовая линия – это линия, в каждой точке которой касательная совпадает с направлением вектора напряженности (см. рис.). Силовым линиям придают направление стрелкой. Свойства силовых линий:

1) Силовые линии непрерывны. Они имеют начало и конец – начинаются на положительных и заканчиваются на отрицательных зарядах.

2) Силовые линии не могут пересекаться друг с другом, т.к. напряженность – это сила, а две силы в данной точке от одного заряда не могут быть.

3) Силовые линии проводят так, чтобы их количество через единичную перпендикулярную площадку было пропорционально величине напряженности.

4) Силовые линии «выходят» и «входят» всегда перпендикулярно поверхности тела.

5) Силовую линию не следует путать с траекторией движущегося заряда. Касательная к траектории совпадает с направлением скорости, а касательная к силовой линии – с силой и, следовательно, с ускорением.

Эквипотенциальной поверхностью называют поверхность, в каждой точке которой потенциал имеет одинаковое значение j = const.

Силовые линии всегда перпендикулярны эквипотенциальным поверхностям. Докажем это. Пусть вдоль эквипотенциальной поверхности перемещается точечный заряд q. Элементарная работа, совершаемая при этом равна dA=qE×cosa×dl = q×dj = 0, т.к. dj = 0. Поскольку q,E и ×dl ¹ 0, следовательно

cosa = 0 и a = 90о .

 

На рисунке изображено электростатическое поле двух одинаковых точечных зарядов. Линии со стрелками – это силовые линии, замкнутые кривые – эквипотенциальные поверхности. В центре осевой линии, соединяющей заряды напряженность равна 0. На очень большом расстоянии от зарядов эквипотенциальные поверхности становятся сферическими. .
На этом рисунке показано однородноеполе – это поле, в каждой точке которого вектор напряженности остается постоянным по величине и направлению Эквипотенциальные поверхности – это плоскости, перпендикулярные силовым линиям. Вектор напряженности всегда направлен в сторону убывания потенциала.

 

Тема 1. Вопрос 6.

 

Принцип суперпозиции.

На основе опытных данных был получен принципа суперпозиции ( наложения ) полей: «Если электрическое поле создается несколькими зарядами, то напряженность и потенциал результирующего поля складываются независимо, т.е. не влияя друг на друга». При дискретном распределении зарядов напряженность результирующего поля равна векторной сумме, а потенциал алгебраической (с учетом знака) сумме полей, создаваемых каждым зарядом в отдельности. При непрерывном распределении заряда в теле векторные суммы заменяется на интегралы, где dE и dj – напряженность и потенциал поля элементарного (точечного) заряда, выделенного в теле. Математически принцип суперпозиции можно записать так.

при дискретном распределении зарядов принцип суперпозиции
при непрерывном распределении зарядов

 

 

Тема 2. Вопрос 1.

 

Теорема Гаусса.

 

Сначала введем понятие «поток вектора» - это скалярная величина

(Н×м2/Кл = В×м) элементарный поток вектора напряженности Е, n – нормаль к площадке, dS – элементарная площадка – это такая малая площадка, в пределах которой Е = const; Еn – проекция вектора Е на направление нормали n
поток вектора напряженности через конечную площадку S
-²- -²- -²-через замкнутую поверхность S
       

 

при дискретном распределении зарядов Теорема Гаусса:«Поток вектора напряженности через любую замкнутую поверхность равен алгебраической сумме зарядов, охватываемых этой поверхностью, деленной на eо» (eо – электрическая постоянная)  
при непрерывном распределении зарядов

1) Сфера, заряженная с поверхностной плотностью заряда s (Кл/м2)

Рассмотрим области: 1) вне сферы () и внутри ее (). Выберем поверхности: 1) S1 и 2) S2 – обе поверхности – сферы, концентрические с заряженной сферой. Сначала найдем потоки вектора Е через выбранные поверхности, а затем воспользуемся теоремой.

(¨) Потоки вектора Е через S1 () и S2. () E ^ n, a = 0, cosa = 1.  
  (¨¨) по теореме Гаусса; F2 = 0, т.к. S2 не охватывает никаких зарядов. Приравнивая потоки из (¨) и (¨¨), найдем E(r).  
 
q = s×2pR2 – полный заряд сферы Вне сферы поле такое же, как поле точечного заряда. На границе сферы происходит скачок напряженности.  

 

Тема 2. Вопрос 2.

Теорема Гаусса.

 

при дискретном распределении зарядов Теорема Гаусса:«Поток вектора напряженности через любую замкнутую поверхность равен алгебраической сумме зарядов, охватываемых этой поверхностью, деленной на eо» (eо – электрическая постоянная)  
при непрерывном распределении зарядов

 

2)Тонкая длинная нить, заряженная с линейной плотностью заряда t (Кл/м)

В этом случае «гауссова» поверхность – соосный с нитью цилиндр длиной l.

Сначала найдем поток, потом воспользуемся теоремой Гаусса.

Разобьем поверхность цилиндра на боковую и две торцевых. Для боковой - cosa = 1, для торцевых - cosa = 0.  
по теореме Гаусса; охватываемый заряд – это отрезок нити длиной l. Приравнивая и сокращая, получим E(r).  
 
 

 

Тема 2. Вопрос 3.

Теорема Гаусса.

 

при дискретном распределении зарядов Теорема Гаусса:«Поток вектора напряженности через любую замкнутую поверхность равен алгебраической сумме зарядов, охватываемых этой поверхностью, деленной на eо» (eо – электрическая постоянная)  
при непрерывном распределении зарядов

3) Тонкостенный длинный цилиндр, заряженный:

1) с линейной плотностью заряда t или

2) с поверхностной плотностью заряда s.

Этот пример аналогичен предыдущему. Выбираем гауссову поверхность в виде соосного цилиндра, разбиваем поверхность на боковую и две торциальные. В первом случае при заданной линейной плотности t получим такую же формулу, как идля длинной нити. Во втором случае охватываемый заряд равен (s×2p×R×l) и формула для E несколько иная, хотя зависимость от r – та же.

 

 

Тема 2. Вопрос 4.

Теорема Гаусса.

 

при дискретном распределении зарядов Теорема Гаусса:«Поток вектора напряженности через любую замкнутую поверхность равен алгебраической сумме зарядов, охватываемых этой поверхностью, деленной на eо» (eо – электрическая постоянная)  
при непрерывном распределении зарядов

4) Плоскость, бесконечно протяженная, заряженная с поверхностной плотностью заряда s.

Выберем гауссову поверхность S в виде цилиндра, перпендикулярного заряженной плоскости. Высота цилиндра (2× х/2). Разобьем поверхность на боковую и две торцевых.

поток через Sбок = 0, т.к. × E ^ n, a = 90о и cosa = 0  
S заштрих – площадка с зарядом, охватываемым цилиндром  
 
S заштрих = S торц, т.к. образующие цилиндра перпендикулярны заряженной плоскости. Поле протяженной плоскости – однородное и не зависит от расстояния  
         

 

5) Две плоскости, параллельные, разноименно заряженные (плоский конденсатор). В этом случае напряженность поля можно найти по принципу суперпозиции, зная напряженность поля одной плоскости:

 

A) ЕА = Е2 - Е1 = 0 B) ЕВ = Е2 + Е1 = s /eо C) ЕС = Е1 - Е2 =0
Поле плоского конденсатора можно считать однородным с достаточной степенью точности, если расстояние между пластинами значительно больше размеров пластин.

 

Тема 3. Вопрос 1.

 





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 811 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если президенты не могут делать этого со своими женами, они делают это со своими странами © Иосиф Бродский
==> читать все изречения...

2486 - | 2349 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.