Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Понятие о статистических моделях. Корреляционно-регрессионные модели




Статистические модели построены на том, что вначале делается предположение о характере связей между анализируемыми переменными, затем проверяется соответствие данных модели и в зависимости от степени этого соответствия делаются определенные выводы.

Простейшей формой статистической модели является линейная регрессия. При ее использовании делается предположение о том, что два показателя связаны друг с другом линейно и именно эта гипотеза и проверяется (кроме того делается предположение о том, что одна переменная зависит от другой). Таким образом, статистические модели базируются на двух типах допущений - как и методы тестирования статистических гипотез они предполагают, что данные распределены определенным образом (чаще всего по нормальному закону распределения), и в дополнение к этому делается предположение о характере связи. Поэтому сделать ошибку при использовании статистических моделей в два раза легче и они обычно рассматриваются как инструментарий требующий дополнительной подготовки в области статистики.

Точно также, как и в случае с тестированием гипотез, для простоты понимания нам следует рассмотреть отдельно модели для качественных и количественных переменных. Хотя медицинские исследователи сейчас чаще работают с качественными показателями, статистические модели лучше разработаны для количественных переменных.

В принципе возможны следующие варианты при которых мы можем захотеть использовать статистические модели:

1. Зависимая переменная количественная, независимые переменные тоже количественные - основной тип модели - множественная (линейная) регрессия

2. Зависимая переменная количественная, независимые переменные качественные - основной тип модели - многофакторный дисперсионный анализ

3. Зависимая переменная количественная, независимые переменные как количественные, так и качественные - основной тип модели - общая линейная модель

4. Зависимая переменная качественная, независимые переменные тоже качественные - основной тип модели - логлинейный анализ

5. Зависимая переменная качественная, независимые переменные количественные - основной тип модели - дискриминантный анализ

6. Зависимая переменная качественная, независимые переменные как качественные, так и количественные - основной тип модели - логистическая регрессия.

Как видно из приведенного выше списка, в целом существуют две наиболее общие процедуры - общая линейная модель для зависимых количественных переменных и логистическая регрессия для зависимых качественных переменных, а все остальные модели являются частными случаями этих двух.

Для ряда приложений, например анализа выживаемости пациентов в проспективном исследовании, описанные выше методики оказались недостаточно приемлемыми, поскольку в этом случае имеется более одной зависимой переменной (одна - что произошло с пациентом, вторая - когда это произошло). Поэтому для анализа выживаемости были разработаны специальные формы статистических моделей, наиболее известными из них являются параметрические регрессионные методы (Вейбулла) и непараметрические регрессионные модели (модель Кокса).

Существуют еще специальные формы статистических моделей, которые пытаются найти скрытые связи между включенными в анализ переменными и наблюдениями. Эти методики пришли в биостатистику из психометрии и к ним относятся:

1. Факторный анализ - методика обнаружения ненаблюдаемых напрямую факторов, отвечающих за связи между количественными переменными

2. Кластерный анализ - методика объединения наблюдений или переменных в группы на основании "одинаковости" измеренных количественных характеристик

3. Корреспондентский анализ - аналог факторного анализа для многомерных таблиц

4. Многомерное шкалирование - методика, пытающаяся расположить переменные друг относительно друга в пространстве меньшей размерности (создать аналог географической карты)

В последнее время, в связи с переходом в хранении данных на компьютерные носители и, в связи с этим, с резким увеличением рутинно собираемых данных, появились новые статистические модели, направленные на выявление закономерностей в крупных и плохо структурированных базах данных.





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 426 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2541 - | 2236 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.