Базовая эталонная модель взаимосвязи открытых систем (ЭМВОС, OSI – Open System Interconnection model) – это модель, принятая ISO для описания общих принципов взаимодействия информационных систем. Модель OSI признана всеми международными организациями как основа для стандартизации протоколов информационных сетей.
В модели OSI информационная сеть рассматривается как совокупность функций, которые делятся на группы, называемые уровнями. Разделение на уровни позволяет вносить изменения в средства реализации одного уровня без перестройки средств других уровней, что значительно упрощает и удешевляет модернизацию средств по мере развития техники.
Модель OSI содержит семь уровней (рис.1.3).
Рис. 1.3. Семиуровневая модель протоколов взаимодействия ЛВС
7-й уровень – прикладной (Application): включает средства управления прикладными процессами; эти процессы могут объединяться для выполнения поставленных заданий, обмениваться между собой данными. Другими словами, на этом уровне определяются и оформляются в блоки те данные, которые подлежат передаче по сети. Уровень включает, например, такие средства для взаимодействия прикладных программ, как прием и хранение пакетов в “почтовых ящиках” (mail-box).
6-й уровень – представительский (Presentation): реализуются функции представления данных (кодирование, форматирование, структурирование). Например, на этом уровне выделенные для передачи данные преобразуются из кода EBCDIC (Extended Binary Coded Decimal Interchange Code – символы кодируются восемью битами) в ASCII (American Standards Committee for Information Interchange – семибитовый двоичный код) и т.п.
5-й уровень – сеансовый (Session): предназначен для организации и синхронизации диалога, ведущегося объектами (станциями) сети. На этом уровне определяются тип связи (дуплекс или полудуплекс), начало и окончание заданий, последовательность и режим обмена запросами и ответами взаимодействующих партнеров.
4-й уровень – транспортный (Transport): предназначен для управления сквозными каналами в сети передачи данных; на этом уровне обеспечивается связь между оконечными пунктами (в отличие от следующего сетевого уровня, на котором обеспечивается передача данных через промежуточные компоненты сети). К функциям транспортного уровня относятся мультиплексирование и демультиплексирование (сборка-разборка пакетов), обнаружение и устранение ошибок в передаче данных, реализация заказанного уровня услуг (например, заказанной скорости и надежности передачи). На транспортном уровне пакеты обычно называют сегментами.
3-й уровень – сетевой (Network): на этом уровне происходит управление передачей пакетов через промежуточные узлы и сети, контроль нагрузки на сеть с целью предотвращения перегрузок, отрицательно влияющих на работу сети, маршрутизация пакетов. Маршрутизация пакетов – определение и реализация маршрутов, по которым передаются пакеты. Маршрутизация сводится к определению логических каналов. Логическим каналом называется виртуальное (не обязательно физическое) соединение двух или более объектов сетевого уровня, при котором возможен обмен данными между этими объектами. Понятию логического канала необязательно соответствие некоего физического соединения линий передачи данных между связываемыми пунктами. Это понятие введено для абстрагирования от физической реализации соединения.
2-й уровень – канальный (Link, уровень звена данных): предоставляет услуги по обмену данными между логическими объектами предыдущего сетевого уровня и выполняет функции, связанные с формированием и передачей кадров, обнаружением и исправлением ошибок, возникающих на следующем, физическом уровне. Кадром называется пакет канального уровня, поскольку пакет на предыдущих уровнях может состоять из одного или многих кадров. В ЛВС функции канального уровня подразделяют на два подуровня: управление доступом к каналу (MAC – Medium Access Control) и управление логическим каналом (LLC – Logical Link Control). К подуровню LLC относится часть функций канального уровня, не связанных с особенностями передающей среды. На подуровне MAC осуществляется доступ к каналу передачи данных.
1-й уровень – физический (Physical): предоставляет механические, электрические, функциональные и процедурные средства для установления, поддержания и разъединения логических соединений между логическими объектами канального уровня; реализует функции передачи битов данных через физические среды. Именно на физическом уровне осуществляются представление информации в виде электрических или оптических сигналов, преобразования формы сигналов, выбор параметров физических сред передачи данных.
В конкретных случаях может возникать потребность в реализации лишь части названных функций, тогда соответственно в сети имеется лишь часть уровней. Так, в простых (неразветвленных) ЛВС отпадает необходимость в средствах сетевого и транспортного уровней.
Передача данных через разветвленные сети происходит при использовании инкапсуляции/декапсуляции порций данных. Так, сообщение, пришедшее на транспортный уровень, делится на сегменты, которые получают заголовки и передаются на сетевой уровень. На сетевом уровне сегмент может быть разделен на части (пакеты), если сеть не поддерживает передачу сегментов целиком. Пакет снабжается своим сетевым заголовком (т.е. происходит инкапсуляция сегментов в пакеты). При передаче между узлами промежуточной ЛВС может потребоваться разделение пакетов на кадры (т.е. инкапсуляция пакетов в кадры). В приемном узле сегменты декапсулируются и восстанавливается исходное сообщение.
Каналы ПЕРЕДАЧИ ДАННЫХ
2.1. Каналы передачи данных: основные определения
Среда передачи данных – совокупность линий передачи данных и блоков взаимодействия (т.е. сетевого оборудования, не входящего в станции данных), предназначенных для передачи данных между станциями данных. Среды передачи данных могут быть общего пользования или выделенными для конкретного пользователя.
Линия передачи данных – средства, которые используются в информационных сетях для распространения сигналов в нужном направлении. Примерами линий передачи данных являются коаксиальный кабель, витая пара проводов, световод.
Характеристиками линий передачи данных являются зависимости затухания сигнала от частоты и расстояния. Затухание принято оценивать в децибелах, 1 дБ = 10·lg(P 1/ P 2), где Р 1и Р 2– мощность сигнала на входе и выходе линии соответственно.
При заданной длине можно говорить о полосе пропускания (полосе частот) линии. Полоса пропускания связана со скоростью передачи информации. Различают бодовую (модуляционную) и информационную скорости. Бодовая скорость измеряется в бодах, т.е. определяется числом изменений дискретного сигнала в единицу времени, а информационная скорость – числом битов информации, переданных в единицу времени. Именно бодовая скорость определяется полосой пропускания линии.
Если на бодовом интервале (между соседними изменениями сигнала) передается N бит, то число градаций модулируемого параметра несущей равно 2N. Например, при числе градаций 16 и скорости 1200 бод одному боду соответствует 4 бит/с и информационная скорость составит 4800 бит/с.
Максимально возможная информационная скорость V связана с полосой пропускания F канала связи формулой Хартли-Шеннона (предполагается, что одно изменение величины сигнала приходится на log2 k бит, где k – число возможных дискретных значений сигнала):
так как V =log2 k / t, где t – длительность переходных процессов, приблизительно равная 3Т в, a Т в=1/(2 F). Здесь k 1+ А, А – отношение сигнал/помеха.
Канал (канал связи) – средства односторонней передачи данных. Примером канала может быть полоса частот, выделенная одному передатчику при радиосвязи. В некоторой линии можно образовать несколько каналов связи, по каждому из которых передается своя информация. При этом говорят, что линия разделяется между несколькими каналами. Существуют два метода разделения линии передачи данных: временное мультиплексирование (иначе разделение по времени, или TDM – Time Division Method), при котором каждому каналу выделяется некоторый квант времени, и частотное разделение (FDM – Frequency Division Method), при котором каналу выделяется некоторая полоса частот.
Канал передачи данных – средства двустороннего обмена данными, включающие АКД и линию передачи данных.
По природе физической среды передачи данных (ПД) различают каналы передачи данных на оптических линиях связи, проводных (медных) линиях связи и беспроводные. В свою очередь, медные каналы могут быть представлены коаксиальными кабелями и витыми парами, а беспроводные – радио- и инфракрасными каналами.
В зависимости от способа представления информации электрическими сигналами различают аналоговые и цифровые каналы передачи данных. В аналоговых каналах для согласования параметров среды и сигналов применяют амплитудную, частотную, фазовую и квадратурно-амплитудную модуляции. В цифровых каналах для передачи данных используют самосинхронизирующиеся коды, а для передачи аналоговых сигналов – кодово-импульсную модуляцию.
Первые сети ПД были аналоговыми, поскольку использовали распространенные телефонные технологии. Но в дальнейшем устойчиво растет доля цифровых коммуникаций (это каналы типа Е1/Т1, ISDN, сети Frame Relay, выделенные цифровые линии и др.).
В зависимости от направления передачи различают каналы симплексные (односторонняя передача), дуплексные (возможность одновременной передачи в обоих направлениях) и полудуплексные (возможность попеременной передачи в двух направлениях).
В зависимости от числа каналов связи в аппаратуре ПД различают одно- и многоканальные средства ПД. В локальных вычислительных сетях и в цифровых каналах передачи данных обычно используют временное мультиплексирование, в аналоговых каналах – частотное разделение.
Если канал ПД монопольно используется одной организацией, то такой канал называют выделенным, в противном случае канал является разделяемым, или виртуальным (общего пользования).
К передаче информации имеют прямое отношение телефонные сети, вычислительные сети передачи данных, спутниковые системы связи, системы сотовой радиосвязи.