Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Броуновское движение. Одним из наиболее убедительных подтверждений основ молекулярно-кинетической теории является броуновское движение

Одним из наиболее убедительных подтверждений основ молекулярно-кинетической теории является броуновское движение. Это явление было открыто в 1827 году английским ботаником Броуном. Оно заключается в том, что все мельчайшие частицы, взвешенные в жидкости, находятся в непрерывном движении. Характер броуновского движения зависит от свойств жидкости и газа, в которых взвешены частицы, но не зависит от свойств вещества самих частиц. Скорость движения броуновских частиц возрастает с повышением температуры и с уменьшением размеров частиц. Все эти закономерности легко объяснить, если мы примем, что движения взвешенных частиц возникают вследствие ударов, испытываемых ими со стороны беспорядочно движущихся молекул жидкости или газа, в которых они находятся.

Броуновское движение объясняется тем, что благодаря хаотичному движению молекул, число ударов молекул на взвешенную частицу с разных сторон не будет одинаковым, в результате возникает некоторая равнодействующая сила определенного направления. Это приводит к движению броуновской частицы по направлению этой силы. Через короткий промежуток времени направление равнодействующей силы изменится и вместе с тем изменится направление движения частицы. Отсюда следует хаотичное движение броуновских частиц, отражающая хаотичность молекулярного движения. Вероятность возникновения равнодействующей силы, связанной ударами молекул о частицу тем больше, чем меньше размеры частиц.

Рассмотрим количественную теорию броуновского движения, созданную Эйнштейном и независимо Смолуховским.

Вследствие неполной компенсации ударов молекул на броуновскую частицу действует, как мы указали выше, некоторая результирующая сила , под действием которой и частица движется. Кроме этой силы на частицу действует сила трения , вызванная вязкостью среды и направленная против силы . Для простоты предположим, что броуновские частицы имеют форму сферы радиуса . Тогда сила трения может быть выражена формулой Стокса:

, (3.17)

где - коэффициент вязкости среды, - скорость движения частицы. Уравнение движения частицы запишется в виде:

. (3.18)

Здесь - масса частицы, - радиус-вектор относительно произвольной системы координат, - скорость частицы.

Рассмотрим проекцию радиус-вектора на ось Х. Для этой составляющей уравнение (3.18) перепишется в виде:

, (3.19)

где - проекция результирующей силы на ось Х.

Наша задача определить смещение броуновской частицы, которое она получит под действием ударов молекул. Различные частицы получают смещение, отличающиеся как по величине, так и по направлению. Вероятное значение суммы смещений всех частиц равно нулю, так как смещения с одинаковой вероятностью могут быть как положительными, так и отрицательными. Среднее значение смещения частиц также будет также равно нулю. Но не будет равно нулю среднее значение квадрата смещения . Преобразуем уравнение (3.19) так, чтобы в него входила величина . Для этого умножим обе части этого уравнения на :

. (3.20)

Используем очевидные тождества:

.

Поставив это выражение в (3.20), получим:

.

Это равенство для любой частицы и поэтому она справедлива также для средних значений входящих в него величин, если усреднение вести по достаточно большому числу частиц. Поэтому можно записать:

.

- среднее значение квадрата составляющей скорости частицы по оси Х. Для большого числа частиц и одинаково часто принимают как положительные, так и отрицательные значения, поэтому . Уравнение (3.19) примет вид:

. (3.21)

Так как движения частиц вполне хаотичны, средние значения квадратов составляющих скорости по всем трем координатным осям должны быть равны друг другу, т.е.

 

.

Очевидно, что

,

где - среднее значение квадрата скорости частицы, откуда следует

.

Таким образом, интересующее нас выражение, входящее в (3.21), равно:

,

где - средняя кинетическая энергия броуновской частицы.

Сталкиваясь с молекулами жидкости или газа, броуновские частицы обмениваются с ними энергией, и находятся в тепловом равновесии со средой, в которой они находятся. Поэтому средняя кинетическая энергия поступательного движения броуновской частицы должны быть равна средней кинетической энергии молекул жидкости или газа, которая равно, как известно, :

.

Следовательно

. (3.22)

Учитывая (3.22), уравнение (3.21) перепишется в виде:

. (3.23)

Это уравнение легко интегрируется. Обозначив , получим:

.

После разделения переменных, имеем:

.

Интегрируя левую часть этого уравнения в пределах от 0 до z, а правую от 0 до t, получим:

.

Или

.

Отсюда

.

Из этого выражения получим, что

.

Величина ничтожно мала, если отрезок времени между последовательными наблюдениями за частицей превышает 10-5 сек., что, конечно, всегда имеет место. Тогда можем записать:

. (3.24)

Для конечных промежутков времени и соответствующих перемещений , уравнение (3.24) можно переписать в виде:

.

Тогда

. (3.25)

Среднее значение квадрата смещения броуновской частицы за промежуток времени вдоль оси Х или другой любой оси, пропорционально этому промежутку времени. Формула (3.25) позволяет вычислить средние значения квадрата перемещений по всем частицам, участвующим в явлении. Но эта формула справедлива и для среднего значения квадрата многих последовательных перемещений одной единственной частицы за равные промежутки времени.

 



<== предыдущая лекция | следующая лекция ==>
Броуновское движение. Винеровский процесс | Броуновское движение
Поделиться с друзьями:


Дата добавления: 2015-09-20; Мы поможем в написании ваших работ!; просмотров: 909 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2230 - | 2116 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.