Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Метод Гаусса. 2 страница. А9. При каких значениях матрица не имеет обратную?




А8. Вычислить:

.

 

 

А9. При каких значениях матрица не имеет обратную?

А10. Решить матричное уравнение:

.

А11. При каких значениях матрица имеет ранг, равный 1?

В1. Вычислить определитель, предварительно обратив в нуль все, кроме одного, элемента какой-либо строки (столбца):

.

В2. Вычислить определитель приведением их методом Гаусса к треугольному виду.

а) б)

В3. Умножить матрицы:

.

В4. При каких значениях матрицы перестановочны?

В5. Найти обратную матрицу:

.

В6. Найти ранг матрицы методом Гаусса:

.

 

 

В7. Решить методом Гаусса систему уравнений:

.

С1. Умножить матрицы:

.

С2. Решить матричным методом систему уравнений из задачи А6 (б).

С3. Решить методом Гаусса системы уравнений:

а) ,   б)
в) .  

 

Вариант 7

А1. Вычислить определитель:

а) б) .

А2. Решить уравнение:

.

А3. Вычислить определитель, пользуясь правилом треугольника:

.

А4. Найти алгеброические дополнения элементов и определителя (см. задачу А3).

А5. Вычислить определитель, используя подходящее разложение по строке или столбцу:

.

А6. Решить систему уравнений с помощью правила Крамера.

а) б)

 

А7. Найти матрицу , полученную путем преобразований матриц и :

.

;

А8. Вычислить:

.

А9. При каких значениях матрица не имеет обратную?

А10. Решить матричное уравнение:

.

А11. При каких значениях матрица имеет ранг, равный 1?

В1. Вычислить определитель, предварительно обратив в нуль все, кроме одного, элемента какой-либо строки (столбца):

.

В2. Вычислить определитель приведением их методом Гаусса к треугольному виду.

а) б)

В3. Умножить матрицы:

.

В4. При каких значениях матрицы перестановочны?

В5. Найти обратную матрицу:

.

В6. Найти ранг матрицы методом Гаусса:

.

В7. Решить методом Гаусса систему уравнений:

С1. Умножить матрицы:

.

С2. Решить матричным методом систему уравнений из задачи А6 (б).

С3. Решить методом Гаусса системы уравнений:

а) , б) ,  
в) .  

 

Вариант 8

А1. Вычислить определитель:

а) б) .

А2. Решить уравнение:

.

А3. Вычислить определитель, пользуясь правилом треугольника:

.

 

 

А4. Найти алгеброические дополнения элементов и определителя (см. задачу А3).

А5. Вычислить определитель, используя подходящее разложение по строке или столбцу:

.

А6. Решить систему уравнений с помощью правила Крамера.

а) б)

А7. Найти матрицу , полученную путем преобразований матриц и :

.

;

А8. Вычислить:

.

А9. При каких значениях матрица не имеет обратную?

А10. Решить матричное уравнение:

.

А11. При каких значениях матрица имеет ранг, равный 1?

В1. Вычислить определитель, предварительно обратив в нуль все, кроме одного, элемента какой-либо строки (столбца):

.

В2. Вычислить определитель приведением их методом Гаусса к треугольному виду.

а) б)

В3. Умножить матрицы:

.

В4. При каких значениях матрицы перестановочны?

В5. Найти обратную матрицу:

.

В6. Найти ранг матрицы методом Гаусса:

.

В7. Решить методом Гаусса систему уравнений:

.

С1. Умножить матрицы:

.

С2. Решить матричным методом систему уравнений из задачи А6 (б).

С3. Решить методом Гаусса системы уравнений:

а) ,   б)
в) .  

Вариант 9

А1. Вычислить определитель:

а) б) .

А2. Решить уравнение:

.

 

А3. Вычислить определитель, пользуясь правилом треугольника:

.

А4. Найти алгеброические дополнения элементов и определителя (см. задачу А3).

А5. Вычислить определитель, используя подходящее разложение по строке или столбцу:

.

А6. Решить систему уравнений с помощью правила Крамера.

а) б)

А7. Найти матрицу , полученную путем преобразований матриц и :

.

;

А8. Вычислить:

.

А9. При каких значениях матрица не имеет обратную?

А10. Решить матричное уравнение:

.

А11. При каких значениях матрица имеет ранг, равный 1?

В1. Вычислить определитель, предварительно обратив в нуль все, кроме одного, элемента какой-либо строки (столбца):

.

 

 

В2. Вычислить определитель приведением их методом Гаусса к треугольному виду.

а) б)

В3. Умножить матрицы:

.

В4. При каких значениях матрицы перестановочны?

В5. Найти обратную матрицу:

.

В6. Найти ранг матрицы методом Гаусса:

.

В7. Решить методом Гаусса систему уравнений:

.

С1. Умножить матрицы:

.

С2. Решить матричным методом систему уравнений из задачи А6 (б).

С3. Решить методом Гаусса системы уравнений:

а) ,   б)
в) .  

 


Вариант 10

А1. Вычислить определитель:

а) б) .

А2. Решить уравнение:

.

А3. Вычислить определитель, пользуясь правилом треугольника:

.

А4. Найти алгеброические дополнения элементов и определителя (см. задачу А3).

А5. Вычислить определитель, используя подходящее разложение по строке или столбцу:

.

А6. Решить систему уравнений с помощью правила Крамера.

а) б)

А7. Найти матрицу , полученную путем преобразований матриц и :

.

;

А8. Вычислить:

.

А9. При каких значениях матрица не имеет обратную?

А10. Решить матричное уравнение:

.

А11. При каких значениях матрица имеет ранг, равный 1?

 

 

В1. Вычислить определитель, предварительно обратив в нуль все, кроме одного, элемента какой-либо строки (столбца):

.

В2. Вычислить определитель приведением их методом Гаусса к треугольному виду.

а) б)

В3. Умножить матрицы:

.

В4. При каких значениях матрицы перестановочны?

В5. Найти обратную матрицу:

.

В6. Найти ранг матрицы методом Гаусса:

.

В7. Решить методом Гаусса систему уравнений:

.

С1. Умножить матрицы:

.

С2. Решить матричным методом систему уравнений из задачи А6 (б).

 

 

С3. Решить методом Гаусса системы уравнений:

а) б) ,  
в) .  

 

Вариант 11

А1. Вычислить определитель:

а) б) .

А2. Решить уравнение:

.

А3. Вычислить определитель, пользуясь правилом треугольника:

.

А4. Найти алгеброические дополнения элементов и определителя (см. задачу А3).

А5. Вычислить определитель, используя подходящее разложение по строке или столбцу:

.

А6. Решить систему уравнений с помощью правила Крамера.

а) б)

А7. Найти матрицу , полученную путем преобразований матриц и :

.

;

А8. Вычислить:

.

 

А9. При каких значениях матрица не имеет обратную?

А10. Решить матричное уравнение:

.

А11. При каких значениях матрица имеет ранг, равный 1?

В1. Вычислить определитель, предварительно обратив в нуль все, кроме одного, элемента какой-либо строки (столбца):

.

В2. Вычислить определитель приведением их методом Гаусса к треугольному виду.

а) б)

В3. Умножить матрицы:

.

В4. При каких значениях матрицы перестановочны?

В5. Найти обратную матрицу:

.

В6. Найти ранг матрицы методом Гаусса:

.

 

 

В7. Решить методом Гаусса систему уравнений:

.

С1. Умножить матрицы:

.

С2. Решить матричным методом систему уравнений из задачи А6 (б).

С3. Решить методом Гаусса системы уравнений:

а) , б)
в) .  

Вариант 12

А1. Вычислить определитель:

а) б) .

А2. Решить уравнение:

.

А3. Вычислить определитель, пользуясь правилом треугольника:

.

А4. Найти алгеброические дополнения элементов и определителя (см. задачу А3).

А5. Вычислить определитель, используя подходящее разложение по строке или столбцу:

.

 

А6. Решить систему уравнений с помощью правила Крамера.

а) б)

А7. Найти матрицу , полученную путем преобразований матриц и :

.

;

А8. Вычислить:

.

А9. При каких значениях матрица не имеет обратную?

А10. Решить матричное уравнение:

.

А11. При каких значениях матрица имеет ранг, равный 1?

В1. Вычислить определитель, предварительно обратив в нуль все, кроме одного, элемента какой-либо строки (столбца):

.

В2. Вычислить определитель приведением их методом Гаусса к треугольному виду.

а) б)

В3. Умножить матрицы:

.

В4. При каких значениях матрицы перестановочны?





Поделиться с друзьями:


Дата добавления: 2015-09-20; Мы поможем в написании ваших работ!; просмотров: 1175 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Свобода ничего не стоит, если она не включает в себя свободу ошибаться. © Махатма Ганди
==> читать все изречения...

2338 - | 2092 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.