Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Теория работы. Металлы имеют кристаллическую структуру: положительно заряженные ионы расположены в узлах кристаллической решетки




 

Металлы имеют кристаллическую структуру: положительно заряженные ионы расположены в узлах кристаллической решетки, а электроны проводимости (обобществленные валентные электроны атомов) могут свободно перемещаться между ними. В разных металлах концентрации свободных электронов различны; отличаются и силы притяжения электронов к положительным ионам, что определяет работу выхода электронов из металла. Под работой выхода понимается работа, которую необходимо затратить для удаления электрона из металла в вакуум.

Если два различных металла привести в тесное соприкосновение путем сварки или спайки (образовать спай), то начнется взаимный переход (диффузия) свободных электронов: электроны начнут переходить из металла с меньшей работой выхода в металл с большей работой выхода более интенсивно, чем наоборот. В связи с этим в металле с большей работой выхода образуется избыток электронов и он зарядится отрицательно; в металле с меньшей работой выхода образуется недостаток электронов и он зарядится положительно. В результате в спае между двумя различными металлами из-за разности работ выхода образуется электрическое поле и возникает контактная разность потенциалов, называемая внешней.

Кроме этого, идет взаимная диффузия свободных электронов за счет их разной концентрации: преимущественно из металла с большей концентрацией свободных электронов в металл с их меньшей концентрацией, что приводит к установлению внутренней контактной разности потенциалов.

Полная контактная разность потенциалов в спае двух разнородных металлов складывается из внешней и внутренней контактной разности потенциалов. Если замкнуть противоположные концы образующих спай проводников (образовать кольцо), то в месте контакта возникает такая же по величине, но противоположная по знаку полная контактная разность потенциалов, и тока в такой замкнутой цепи не будет.

Если же оба спая кольца из двух разнородных металлов поддерживать при разной температуре, в замкнутой цепи кольца появляется термоэлектрический ток. Причина появления термоэлектрического тока следующая: т.к. диффузия свободных электронов происходит в процессе теплового движения, то в горячем спае диффузия будет интенсивней и контактная разность потенциалов там станет более высокой, чем в холодном спае, появится результирующая разность потенциалов, равная разности контактных разностей потенциалов в нагретом и холодном спаях и называемая термоэлектродвижущей силой (ТЭДС). Явление возникновения ТЭДС в электрическом контуре из двух проводников из разных металлов, контакты между которыми поддерживаются при разных температурах, называется эффектом Зеебека. ТЭДС зависит от материала проводников и разности температур между ними.

Обратное явление – эффект Пельтьезаключается в выделении или поглощении тепла на спае двух разнородных проводников при протекании через него электрического тока. В замкнутой цепи из двух разнородных проводников имеются два спая, один из которых всегда охлаждается, а другой – нагревается.

Устройство, состоящее из двух последовательно соединенных между собой разнородных металлов (или полупроводников), называется термоэлементом. Несколько термоэлементов, включенных последовательно (или параллельно), образуют термоэлектрическую батарею.

Термоэлементы используется для преобразования тепловой энергии в электрическую (или наоборот). Если в термоэлементах используется эффект Зеебека, их применяют для измерения температуры и др. величин, связанных с температурой, а также в качестве источников электрической энергии. Термоэлементы, используемые в измерительной технике, называют термопарами. Т ермопары позволяют определять температуру объектов дистанционно, а также фиксировать ее в автоматическом режиме. На эффекте Пельтье в термоэлементах основана работа микрохолодильников, кондиционеров и термостатов, которые широко используются для охлаждения и стабилизации температуры в миниатюрных устройствах твердотельной микроэлектроники.

Найдем величину ТЭДС для термопары. В замкнутой цепи из двух разнородных металлов (1 и 2), контакты которых находятся при постоянных неодинаковых темпера­турах T 1 и T 2, величина ТЭДС, согласно классической электронной теории, будет равна:

 

, (1)

 

где е - заряд электрона; n 01 и n 02 - концентрация свободных элек­тронов в металлах 1 и 2 соответственно; k - постоянная Больцмана; T 1 и T 2 - абсолютная температура контакта 1 и 2 соответственно.

Величина называется удельной термоэлектродвижущей силой, т.е. ТЭДС, возникающей в цепи при разности температур между спаями в один градус.

Если замкнуть термопару на внешнее сопротивление R, то возникающая ТЭДС e может быть представлена в виде:

 

, (2)

 

 

где r - внутреннее сопротивление тер­моэлемента; I – сила тока в нем. Если r достаточно мало по сравнению с R, так что измене­ние r при нагревании почти не сказывается на общем сопротив­лении, то можно считать силу тока I пропорциональной ТЭДС, по­следняя же возрастает пропорционально разности температур кон­тактов:

 

, (3)

 

где c - удельная ТЭДС термоэлемента.

Если полученный таким образом термоток измерить чувстви­тельным гальванометром, то отклонение a стрелки гальванометра, пропорциональное силе тока I, будет в случае соблюдения равенств (2) и (3) пропорционально разности темпера­тур. На этом явлении и основан метод градуировки термоэлемента.

Градуировка термопары производится путем помещения од­ного из его контактов в среду с неизменной температурой (на­пример, в воду с температурой t 0°C), второго - в среду с переменной температурой ti °C и определения соответствующих от­клонений ai стрелки гальванометра. Результаты этих изме­рений представляются в виде графика ai (ti): , откуда получаем . Постоянство величины g, определяющей наклон кривой графика ai (ti), является критерием применимости формулы (3).

Определение удельной термоэлектродвижущей силы термоэлемен­та производится следующим образом: измеряют отклонение указате­ля гальванометра a 0, соответствующее определен­ной разности температур tit 0. Затем производят из­мерение при той же разности температур tit 0, но при включенном последовательно с гальванометром добавочным сопро­тивлением R 1. Обозначая неизвестное сопротивление цепи, состоящей из термоэлемента, гальванометра и соединитель­ных проводов, через R 0, будем иметь для первого случая

, (4)

а для второго

, (5)

 

где a 0 - отклонение стрелки гальванометра без сопротивления R 1 в цепи; a 1 - отклонение стрелки гальванометра при наличии сопротивления R 1; S - чувствительность гальванометра, т.е. сила тока, вы­зывающая отклонение стрелки гальванометра на одно деление. Приравнивая (4) и (5), получим выражение подставив его в (4), получим

. (6)

 

Учитывая, что Тi – Т 0 = D Тi = (ti + 273) – (t 0+ 273) = tit 0 = D ti из выражения (3) для удельной термоЭДС получим

 

(7)





Поделиться с друзьями:


Дата добавления: 2015-09-20; Мы поможем в написании ваших работ!; просмотров: 742 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Люди избавились бы от половины своих неприятностей, если бы договорились о значении слов. © Рене Декарт
==> читать все изречения...

2444 - | 2243 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.