Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Общие принципы построения цифровых осциллографов




 

Основной трудностью в создании аналоговых осциллографов является проек­тирование широкополосных и сверхширокополосных усилителей с высоким вы­ходным напряжением, достаточным для возбуждения отклоняющих систем ЭЛТ. Между тем, чтобы получить изображение формы сигнала вовсе не обязательно усиливать его до уровня возбуждения пластин ЭЛТ в десятки и сотни В. Одним из основных направлений совершенствования осциллографов является использование в их схемах микропроцессоров и цифровых методов обработки сигналов, что позволяет отображать информацию на плоских жидкокристаллических дисплеях.

Функциональная схема цифрового осциллографа упрощенно показана на (рис. 8.1). Исследуемый сигнал, пройдя делитель (Д) и аналоговый усилитель А с ма­лым выходным напряжением, поступает на схему выборки (СВ) и аналого-цифро­вой преобразователь (АЦП). Для этого сигнал y{t) представляется рядом равномер­но распределенных во времени выборок y12,...yN, которые представляются в цифровой форме и размещаются в устройстве памяти цифрового осциллографа. Это говорит о том, что такой осциллограф заодно является запоминающим. Такие приборы часто называют цифровыми запоминающими осциллографами (ЦЗО).

Рисунок 8.1 - Функциональная схема цифрового осциллографа

Новым важным параметром осциллографа является объем памяти (как общий, так и на канал или осциллограмму). Извлекаемые из памяти цифровые данные подаются на цифро-аналоговый преобразователь (ЦАП) и могут быть превращены вновь в аналоговый сигнал, но трансформированный во времени. Он отображается на ЭЛТ или ЖКИ. В случае применения цифрового ЖКИ, ЦАП может и не потребоваться. Для создания развертки обычно используется тактовый генератор и счетчик импульсов. Последний управляет адресами выборки цифровых данных из памяти.

Помимо объема памяти, другим важным параметром АЦП является частота работы или частота выборки. В случае сложных форм исследуемых сигналов она должна быть в десятки, а иногда и в сотни раз выше частоты повторения периодического сигнала. В случае регистрации однократных сигналов с длительностью tИ для его представления также надо иметь определенное число N отсчетов, так что период равномерного по времени квантования сигнала будет равен dt=tИ/N частота квантования fK= l/dt = N/tИ. Например, если сигнал с длительностью tИ = 0,1 мкс представить 100 отсчетами, то получим dt = 1нс и fк=1 ГГц. Чтобы иск­лючить путаницу между обычной граничной частотой и частотой выборок последнюю обычно указывают в числе выборок в секунду, например, Мвыб/с или Мв/с. Этот пример наглядно иллюстрирует основную проблему в построении цифро­вых осциллографов, работающих в реальном масштабе времени, - необходимость в быстродействующих АЦП. Частота квантования сигналов АЦП должна хотя бы на порядок превышать максимальную частоту наблюдаемого сигнала, с тем, чтобы на самый короткий сигнал пришлось бы хотя бы десять отчетов. При этом воз­можно исследование как однократных, так и периодических сигналов. В случае периодических сигналов возможна статистическая обработка отсчетов, например усреднением тем или иным способом и построение усредненной осциллограммы, Промышленность выпускает множество АЦП и наиболее скоростные из них могут использоваться для создания цифровых осциллографов с эффективной по­лосой тракта Y до 50—100 МГц. Это означает, что АЦП для таких осциллографов должны иметь частоты дискретизации до 0,5 - 1 ГГц. Однако для получения более высоких частот нужны специализированные АЦП. Бесспорным лидером в разработке скоростных АЦП для цифро­вых осциллографов является корпорация Tektronix - мировой лидер в разработке осциллографических измерительных приборов. Она имеет свои уникальные АЦП с частотой квантования до 10—20 ГГц.

Другим важным параметром АЦП является их разрядность - число уровней квантования сигнала в двоичной форме. Подавляющее большинство АЦП для стробоскопических осциллографов имеет стандартную разрядность, равную 8. Это значит, что число различимых уровней сигнала составляет 28 = 256. Однако при этом ступенчатость осциллограмм обычно заметна на глаз. Поэтому некоторые АЦП для цифровых осциллог­рафов могут иметь большую разрядность. Эту разрядность не надо путать с разрядностью встроенного в осциллограф управляющего микропроцессора - она обычно равна 16 или даже 32 битам.

В конечной разрядности квантования (как по уровню, так и по времени) кроется «ахиллесова пята» цифровой осциллографии. Например, если в осциллограмме сложного сигнала присутствуют мелкие детали, то цифровой осциллограф их может просто не заметить. Между тем аналоговый осциллограф с помощью растяжки изображения по вертикали и по горизонтали вполне в состоянии развернуть изображение детали на весь экран.

Наконец, третьим специфическим параметром цифровых осциллографов является объем памяти — общий и на одну осциллограмму. Большинство современных цифровых осциллографов способно хранить в памяти несколько осциллограмм и выводить их на экран своего дисплея.

Не следует забывать, что три перечисленные выше параметра являются хотя и важными, но дополнительными. Кроме них цифровой осциллограф характеризуется рядом тех же параметров, что и аналоговые осциллографы. Прежде всего это относится к ширине полосы частот и времени нарастания капала Y, чувствитель­ности и диапазона длительностей развертки.

Первые осциллографы с оцифровкой сигналов были построены па основе обычных аналоговых осциллографов с обычной ЭЛТ. Они обладали всеми пара­метрами, характерными для аналоговых осциллографов, Вначале цифровые мето­ды использовались лишь для измерения параметров исследуемых сигналов с выво­дом их значений на экран дисплея или на отдельный светодиодный или жидкокри­сталлический индикатор. Затем стала использоваться трансформация высокоскоростных сигналов в низкоскоростные, отображаемые обычной ЭЛТ.

Такие приборы обычно называются аналого-цифровыми осциллографами, поско­льку они содержат аналоговый тракт, задающий частотно-временные параметры осциллографа и цифровую часть. Они выпускаются и поныне, но этот выпуск по­степенно сокращается из-за дороговизны таких приборов, их больших размеров и массы. В тоже время выпуск чисто цифровых приборов постоянно растет. Это связано с применением в новых моделях цифровых осциллографов малогабарит­ных плоских ЖК-дисплеев (нередко цветных), расширенными средствами циф­ровой обработки осциллограмм и возможностью уменьшения габаритов и веса приборов. Но цифровые осциллографы среднего класса стоят намного дороже аналоговых приборов, так что к числу общедоступных их не отнесешь.

Несколько слов следует сказать о стробоскопических осциллографах. Они похожи на цифровые (наличием блока выборки с запоминанием), но для построения их трансформируемого по времени (растянутого) изображения используют от­веты от разных периодов исследуемого сигнала, со сдвигом отсчетов от периода периоду. Это означает, что такие осциллографы могут отображать только периодические сигналы с множеством повторяющихся периодов. Это крупный недостаток стробоскопических осциллографов. Исследовать однократные и редко повторяющиеся процессы они не могут. Кроме того, преобразований выборок в числа у таких осциллографов нет, так что к цифровым они не относятся. Основной областью их применения является исследование сверхскоростных процессов с частотами выше 10-20 ГГц.

Современные цифровые осциллографы в реальном масштабе времени способны отображать даже однократные сигналы с частотами их спектра до 10-20 ГГц, при этом максимальная фиксированная частота выборок достигает 50 ГГц.





Поделиться с друзьями:


Дата добавления: 2015-05-08; Мы поможем в написании ваших работ!; просмотров: 1407 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2225 - | 2154 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.