Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Законы распределения случайных величин




 

В метрологии при измерениях все наблюдаемые величины являются случайными и могут иметь самые различные законы распределения. Однако наиболее распространенными при обработке результатов наблюдений являются нормальный закон Гаусса и закон распределения Стьюдента, при разработке цифровых систем приборов используется квантование сигналов, в котором применяется треугольный и равномерный законы распределения, при измерении природных явлений, применяя теорию массового обслуживания, используется биномиальное распределение и т.п. Мы опишем только наиболее распространенные, отсылая к специальной литературе по теории вероятности и математической статистике (ГОСТ Р 50779.10-2000 (ИСО 3534.1-93)).

Нормальное распределение Гаусса. Закон нормальное распределение Гаусса занимает особое положение в теории вероятности, математической статистике и теории обработки результатов измерений. Он широко применяется в физике. Этому закону распределения подчиняются многие природные явления и процессы. Он является также предельным – к нему стремятся многие другие законы распределения при возрастании числа измерений.

Плотность распределения случайной величины при нормальном распределении Гаусса выражается в виде:

где - математическое ожидание ();

- среднеквадратическое отклонение (СКО);

- дисперсия ().

Скос и эксцесс равны нулю:

.

Интеграл вероятности имеет вид:

 

Стандартное нормальное распределение. Если заменить переменные (т.е. их пронормировать и заменить) ( - стандартизованная случайная величина), то получим стандартное нормальное распределение с плотностью распределения в виде

а интеграл вероятности Гаусса преобразуется, и будет иметь вид

Функция табулирована [41], если таблица приведена для интеграла

,

(её иногда называют функцией Лапласа), то в этом случае

.

Примечание. При пользовании таблицами для избежания ошибок вычислений следует обращать внимание на то, для какой функции они составлены (на интеграл).

Для стандартного нормального распределения

.

Стандартное нормальное распределение обозначают символом N(0, 1) и называют: нормированное нормальное распределение, стандартное распределение Лапласа-Гаусса (ГОСТ Р 50779.10-2000).

Связь с интегралом ошибок. Интегралом ошибок называют функцию

Интеграл ошибок у нас в стране распространения не получил, но за рубежом имеет применение.

Интеграл вероятности Гаусса связан с интегралом ошибок следующим соотношением:

В литературе нормальный закон называют по-разному:

- нормальный закон Гаусса,

- Гауссовское распределение,

- второй закон Лапласа,

- Лаплассовское распределение,

- нормированная функция Лапласа,

- распределение Гаусса-Лапласа,

- распределение Лапласа-Гаусса (ГОСТ Р 50779.10-2000).

Нормальный закон распределения для погрешностей. Плотность нормального закона распределения для погрешностей имеет вид:

,

где .

 





Поделиться с друзьями:


Дата добавления: 2015-05-08; Мы поможем в написании ваших работ!; просмотров: 1059 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Люди избавились бы от половины своих неприятностей, если бы договорились о значении слов. © Рене Декарт
==> читать все изречения...

2475 - | 2271 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.