Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


не пользуясь формулами дифференцирования)




Пример 1. Исходя из определения производной (не пользуясь формулами дифференцирования), найти производную функции

Решение:

  1. Придаем аргументу произвольное приращение и, подставляя в данное выражение функции вместо наращенное значение , находим наращенное значение функции

В данном случае

  1. Находим приращение функции

  1. Делим приращение функции на приращение аргумента, т. е. составим отношение

  1. Ищем предел этого отношения при . Этот предел и даст искомую производную от функции ;


 

 

Таблица производных
Производные простых функций Производные обратных тригонометрических функций
 
Производные экспоненциальных и логарифмических функций Производные гиперболических функций
Производные тригонометрических функций
Правила дифференцирования

 





Поделиться с друзьями:


Дата добавления: 2015-05-07; Мы поможем в написании ваших работ!; просмотров: 1303 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Даже страх смягчается привычкой. © Неизвестно
==> читать все изречения...

2456 - | 2156 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.