34. Выделенная линия - это линия связи (канал передачи данных), установленная постоянно или на длительное время. То есть, пользователь раз и навсегда каким-либо способом соединяется с провайдером и избавляется от необходимости дозваниваться до него. В общем случае к пользователю проводится отдельный провод, к другому концу которого провайдер прицепляет модем, обслуживающий исключительно данного пользователя. Выделенная линия позволяет, во-первых, работать на существенно более высоких скоростях, а во-вторых, подключить к Интернету сразу всю локальную сеть организации, независимо от количества компьютеров. Передача данных осуществляется с помощью модемов, установленных в режим работы по выделенной линии поскольку, в данном случае от модема не требуется традиционный набор многоканального номера и он должен выдавать «несущую» частоту, на которой происходит прием и передача данных, не ожидая сигнала в линии.
Ретрансляция кадров.
Frame relay (англ. «ретрансляция кадров», FR) — протокол канального уровня сетевой модели OSI. Служба коммутации пакетов Frame Relay в настоящее время широко распространена во всём мире. Максимальная скорость, допускаемая протоколом FR — 34,368 мегабит/сек (каналы E3). Коммутация: точка-точка.
Frame Relay был создан в начале 1990-х в качестве замены протоколу X.25 для быстрых надёжных каналов связи, технология FR архитектурно основывалась на X.25 и во многом сходна с этим протоколом, однако в отличие от X.25, рассчитанного на линии с достаточно высокой частотой ошибок, FR изначально ориентировался на физические линии с низкой частотой ошибок, и поэтому большая часть механизмов коррекции ошибок X.25 в состав стандарта FR не вошла. В разработке спецификации принимали участие многие организации; многочисленные поставщики поддерживают каждую из существующих реализаций, производя соответствующее аппаратное и программное обеспечение.
Frame relay обеспечивает множество независимых виртуальных каналов (Virtual Circuits, VC) в одной линии связи, идентифицируемых в FR-сети по идентификаторам подключения к соединению (Data Link Connection Identifier, DLCI). Вместо средств управления потоком включает функции извещения о перегрузках в сети. Возможно назначение минимальной гарантированной скорости (CIR) для каждого виртуального канала.
В основном применяется при построении территориально распределённых корпоративных сетей, а также в составе решений, связанных с обеспечением гарантированной пропускной способности канала передачи данных (VoIP, видеоконференции и т. п.).
CIR (англ. Committed Information Rate) — гарантированная полоса пропускания виртуального канала PVC в сетях Frame Relay (FR).
В первоначальном наборе стандартов (ANSI T1S1) CIR как отдельный параметр отсутствует, но для отдельного виртуального канала были определены параметры B(c) (bits committed, Committed Burst Size), B(e) (bits excess) и T(c) (Committed Rate Measurement Interval). B(c) при этом определяется как количество бит, гарантированно передаваемых за время T(c) даже при перегрузке сети, B(e) — максимальное количество бит, которые могут быть переданы за время T(c) при недогрузке сети, то есть без гарантии доставки: заголовки пакетов, отправляемые после превышения B(c) метятся битом DE (discard eligible, аналогичен CLP в ATM) и в случае возникновения в сети перегрузки уничтожаются на коммутаторах перегруженного участка.
Таким образом, для виртуального канала могут быть определены две полосы пропускания:
§ CIR=B(c)/T(c) — гарантированная полоса пропускания
§ EIR=(B(c) + B(e))/T(c) — максимальная негарантированная полоса пропускания (добавляется возможный дополнительный объем трафика)
Возможна настройка и работа FR-каналов со значением CIR, равным нулю.
Для передачи данных от отправителя к получателю в сети Frame Relay создаются виртуальные каналы, VC (англ. Virtual Circuit), которые бывают двух видов:
§ постоянный виртуальный канал, PVC (Permanent Virtual Circuit), который создаётся между двумя точками и существует в течение длительного времени, даже в отсутствие данных для передачи;
§ коммутируемый виртуальный канал, SVC (Switched Virtual Circuit), который создаётся между двумя точками непосредственно перед передачей данных и разрывается после окончания сеанса связи
36. Уровни TCP/IP.
Существуют разногласия в том, как вписать модель TCP/IP в модель OSI, поскольку уровни в этих моделях не совпадают.
К тому же, модель OSI не использует дополнительный уровень — «Internetworking» — между транспортным и сетевым уровнями. Примером спорного протокола может быть ARP илиSTP.
Распределение протоколов по уровням модели TCP/IP | ||
Прикладной «7 уровень» | напр., HTTP, RTP, FTP, DNS | |
Транспортный | напр., TCP, UDP, SCTP, DCCP (RIP, протоколы маршрутизации, подобные OSPF, что работают поверх IP, являются частью сетевого уровня) | |
Сетевой | Для TCP/IP это IP (IP) (вспомогательные протоколы, вроде ICMP и IGMP, работают поверх IP, но тоже относятся к сетевому уровню; протокол ARP является самостоятельным вспомогательным протоколом, работающим поверх физического уровня) | |
'Доступа к среде | Ethernet, IEEE 802.11 Wireless Ethernet, SLIP, Token Ring, ATM и MPLS, физическая среда и принципы кодирования информации, T1, E1 |
Виды адресации в сетях.
Каждый компьютер в сети TCP/IP имеет адреса трех уровней:
· Локальный адрес узла, определяемый технологией, с помощью которой построена отдельная сеть, в которую входит данный узел. Для узлов, входящих в локальные сети - это МАС-адрес сетевого адаптера или порта маршрутизатора, например, 11-А0-17-3D-BC-01. Эти адреса назначаются производителями оборудования и являются уникальными адресами, так как управляются централизовано. Для всех существующих технологий локальных сетей МАС-адрес имеет формат 6 байтов: старшие 3 байта - идентификатор фирмы производителя, а младшие 3 байта назначаются уникальным образом самим производителем. Для узлов, входящих в глобальные сети, такие как Х.25 или frame relay, локальный адрес назначается администратором глобальной сети.
· IP-адрес, состоящий из 4 байт, например, 109.26.17.100. Этот адрес используется на сетевом уровне. Он назначается администратором во время конфигурирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произвольно, либо назначен по рекомендации специального подразделения Internet (Network Information Center, NIC), если сеть должна работать как составная часть Internet. Обычно провайдеры услуг Internet получают диапазоны адресов у подразделений NIC, а затем распределяют их между своими абонентами.
Номер узла в протоколе IP назначается независимо от локального адреса узла. Деление IP-адреса на поле номера сети и номера узла - гибкое, и граница между этими полями может устанавливаться весьма произвольно. Узел может входить в несколько IP-сетей. В этом случае узел должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.
· Символьный идентификатор-имя, например, SERV1.IBM.COM. Этот адрес назначается администратором и состоит из нескольких частей, например, имени машины, имени организации, имени домена. Такой адрес, называемый также DNS-именем, используется на прикладном уровне, например, в протоколах FTP или telnet.
38. MAC – адресация.
MAC-адрес (от англ. Media Access Control — управление доступом к среде, также Hardware Address) — это уникальный идентификатор, присваиваемый каждой единице оборудования компьютерных сетей. Большинство сетевых протоколов канального уровня используют одно из трёх пространств MAC-адресов, управляемых IEEE: MAC-48, EUI-48 иEUI-64. Адреса в каждом из пространств теоретически должны быть глобально уникальными. Не все протоколы используют MAC-адреса, и не все протоколы, использующие MAC-адреса, нуждаются в подобной уникальности этих адресов.
В широковещательных сетях (таких, как сети на основе Ethernet) MAC-адрес позволяет уникально идентифицировать каждый узел сети и доставлять данные только этому узлу. Таким образом, MAC-адреса формируют основу сетей на канальном уровне, которую используют протоколы более высокого (сетевого) уровня. Для преобразования MAC-адресов в адреса сетевого уровня и обратно применяются специальные протоколы (например, ARP и RARP в сетях IPv4 и NDP в сетях на основе IPv6).
Адреса вроде MAC-48 наиболее распространены; они используются в таких технологиях, как Ethernet, Token ring, FDDI, WiMAX и др. Они состоят из 48 бит, таким образом, адресное пространство MAC-48 насчитывает 248 (или 281 474 976 710 656) адресов. Согласно подсчётам IEEE, этого запаса адресов хватит по меньшей мере до 2100 года.
EUI-48 от MAC-48 отличается лишь семантически: в то время как MAC-48 используется для сетевого оборудования, EUI-48 применяется для других типов аппаратного и программного обеспечения.
Идентификаторы EUI-64 состоят из 64 бит и используются в FireWire, а также в IPv6 в качестве младших 64 бит сетевого адреса узла.
DNS имена.
DNS (Domain Name System) - это распределенная база данных, поддерживающая иерархическую систему имен для идентификации узлов в сети Internet. Служба DNS предназначена для автоматического поиска IP-адреса по известному символьному имени узла. Спецификация DNS определяется стандартами RFC 1034 и 1035. DNS требует статической конфигурации своих таблиц, отображающих имена компьютеров в IP-адрес.
Протокол DNS является служебным протоколом прикладного уровня. Этот протокол несимметричен - в нем определены DNS-серверы и DNS-клиенты. DNS-серверы хранят часть распределенной базы данных о соответствии символьных имен и IP-адресов. Эта база данных распределена по административным доменам сети Internet. Клиенты сервера DNS знают IP-адрес сервера DNS своего административного домена и по протоколу IP передают запрос, в котором сообщают известное символьное имя и просят вернуть соответствующий ему IP-адрес.
Если данные о запрошенном соответствии хранятся в базе данного DNS-сервера, то он сразу посылает ответ клиенту, если же нет - то он посылает запрос DNS-серверу другого домена, который может сам обработать запрос, либо передать его другому DNS-серверу. Все DNS-серверы соединены иерархически, в соответствии с иерархией доменов сети Internet. Клиент опрашивает эти серверы имен, пока не найдет нужные отображения. Этот процесс ускоряется из-за того, что серверы имен постоянно кэшируют информацию, предоставляемую по запросам. Клиентские компьютеры могут использовать в своей работе IP-адреса нескольких DNS-серверов, для повышения надежности своей работы.
База данных DNS имеет структуру дерева, называемого доменным пространством имен, в котором каждый домен (узел дерева) имеет имя и может содержать поддомены. Имя домена идентифицирует его положение в этой базе данных по отношению к родительскому домену, причем точки в имени отделяют части, соответствующие узлам домена.
Корень базы данных DNS управляется центром Internet Network Information Center. Домены верхнего уровня назначаются для каждой страны, а также на организационной основе. Имена этих доменов должны следовать международному стандарту ISO 3166. Для обозначения стран используются трехбуквенные и двухбуквенные аббревиатуры, а для различных типов организаций используются следующие аббревиатуры:
· com - коммерческие организации (например, microsoft.com);
· edu - образовательные (например, mit.edu);
· gov - правительственные организации (например, nsf.gov);
· org - некоммерческие организации (например, fidonet.org);
· net - организации, поддерживающие сети (например, nsf.net).
Каждый домен DNS администрируется отдельной организацией, которая обычно разбивает свой домен на поддомены и передает функции администрирования этих поддоменов другим организациям. Каждый домен имеет уникальное имя, а каждый из поддоменов имеет уникальное имя внутри своего домена. Имя домена может содержать до 63 символов. Каждый хост в сети Internet однозначно определяется своимполным доменным именем (fully qualified domain name, FQDN), которое включает имена всех доменов по направлению от хоста к корню.
IP адресация.
IP-адрес (айпи-адрес, сокращение от англ. Internet Protocol Address) — уникальный сетевой адрес узла в компьютерной сети, построенной по протоколу IP. В сети Интернет требуется глобальная уникальность адреса; в случае работы в локальной сети требуется уникальность адреса в пределах сети. В версии протокола IPv4 IP-адрес имеет длину 4 байта.
IPv4
В 4-й версии IP-адрес представляет собой 32-битовое число. Удобной формой записи IP-адреса (IPv4) является запись в виде четырёх десятичных чисел значением от 0 до 255, разделённых точками, например, 192.168.0.1.
IPv6
В 6-й версии IP-адрес (IPv6) имеет 128-битовое представление. Адреса разделяются двоеточиями (напр. fe80:0:0:0:200:f8ff:fe21:67cf или 2001:0db8:85a3:0000:0000:8a2e:0370:7334). Большое количество нулевых групп может быть пропущено с помощью двойного двоеточия (fe80::200:f8ff: fe21:67cf). Такой пропуск может быть единственным в адресе.
IP-адрес состоит из двух частей: номера сети и номера узла. В случае изолированной сети её адрес может быть выбран администратором из специально зарезервированных для таких сетей блоков адресов (10.0.0.0/8, 172.16.0.0/12 или 192.168.0.0/16). Если же сеть должна работать как составная часть Интернета, то адрес сети выдаётся провайдером либо региональным интернет-регистратором (Regional Internet Registry, RIR). Согласно данным на сайте IANA[1] существует пять RIR: ARIN, обслуживающий Северную Америку; APNIC, обслуживающий страны Юго-Восточной Азии; AfriNIC, обслуживающий страны Африки; LACNIC, обслуживающий страны Южной Америки и бассейна Карибского моря; и RIPE NCC, обслуживающий Европу, Центральную Азию, Ближний Восток. Региональные регистраторы получают номера автономных систем и большие блоки адресов у IANA, а затем выдают номера автономных систем и блоки адресов меньшего размера локальным интернет-регистраторам (Local Internet Registries, LIR), обычно являющимся крупными провайдерами.
Номер узла в протоколе IP назначается независимо от локального адреса узла. Маршрутизатор по определению входит сразу в несколько сетей. Поэтому каждый порт маршрутизатора имеет собственный IP-адрес. Конечный узел также может входить в несколько IP-сетей. В этом случае компьютер должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.
Есть два способа определения того, сколько бит отводится на маску подсети, а сколько - на IP-адрес.
Изначально использовалась классовая адресация (INET), но со второй половины 90-х годов XX века она была вытеснена бесклассовой адресацией (CIDR), при которой количество адресов в сети определяется маской подсети.
IP-адрес называют статическим (постоянным, неизменяемым), если он назначается пользователем в настройках устройства, либо если назначается автоматически при подключении устройства к сети и не может быть присвоен другому устройству.
IP-адрес называют динамическим (непостоянным, изменяемым), если он назначается автоматически при подключении устройства к сети и используется в течение ограниченного промежутка времени, указанного в сервисе назначавшего IP-адрес (DHCP).
Классы IP адресов.
Класс А
N сети | N узла |
Класс В
N сети | N узла |
Класс С
N сети | N узла |
Класс D
адрес группы multicast |
Класс Е
зарезервирован |
Рис. 3.1. Структура IР-адреса
Адрес состоит из двух логических частей - номера сети и номера узла в сети. Какая часть адреса относится к номеру сети, а какая к номеру узла, определяется значениями первых битов адреса:
· Если адрес начинается с 0, то сеть относят к классу А, и номер сети занимает один байт, остальные 3 байта интерпретируются как номер узла в сети. Сети класса А имеют номера в диапазоне от 1 до 126. (Номер 0 не используется, а номер 127 зарезервирован для специальных целей, о чем будет сказано ниже.) В сетях класса А количество узлов должно быть больше 216, но не превышать 224.
· Если первые два бита адреса равны 10, то сеть относится к классу В и является сетью средних размеров с числом узлов 28 - 216. В сетях класса В под адрес сети и под адрес узла отводится по 16 битов, то есть по 2 байта.
· Если адрес начинается с последовательности 110, то это сеть класса С с числом узлов не больше 28. Под адрес сети отводится 24 бита, а под адрес узла - 8 битов.
· Если адрес начинается с последовательности 1110, то он является адресом класса D и обозначает особый, групповой адрес - multicast. Если в пакете в качестве адреса назначения указан адрес класса D, то такой пакет должны получить все узлы, которым присвоен данный адрес.
· Если адрес начинается с последовательности 11110, то это адрес класса Е, он зарезервирован для будущих применений.
В таблице приведены диапазоны номеров сетей, соответствующих каждому классу сетей.
Класс | Наименьший адрес | Наибольший адрес |
A | 01.0.0 | 126.0.0.0 |
B | 128.0.0.0 | 191.255.0.0 |
C | 192.0.1.0. | 223.255.255.0 |
D | 224.0.0.0 | 239.255.255.255 |
E | 240.0.0.0 | 247.255.255.255 |
Маска подсети.
В терминологии сетей TCP/IP маской подсети или маской сети называется битовая маска, определяющая, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети. Например, узел с IP-адресом 12.34.56.78 и маской подсети 255.255.255.0 находится в сети 12.34.56.0/24 с длиной префикса 24 бита. В случае адресации IPv6 адрес 2001:0DB8:1:0:6C1F:A78A:3CB5:1ADD с длиной префикса 32 бита (/32) находится в сети 2001:0DB8::/32.
Другой вариант определения — это определение подсети IP-адресов. Например, с помощью маски подсети можно сказать, что один диапазон IP-адресов будет в одной подсети, а другой диапазон соответственно в другой подсети.
Маски подсети являются основой метода бесклассовой маршрутизации (CIDR). При этом подходе маску подсети записывают вместе с IP-адресом в формате «IP-адрес/количество единичных бит в маске». Число после слэша означает количество единичных разрядов в маске подсети.