Вин пектина | Характестика | ||
по степени этерификации | по молекулярной массе | по наличию ацетильных групп | |
Яблочный | Высокоэтерифицированный | Высокомолекулярный | Неацетилированрованный |
Цитрусовый | То же | Низкомолекулярный | То же |
Свекловичный | Низкоэтерифицированный | То же | Метилированный |
Подсолнечнико-вый | То же | Высокомолекулярный | То же |
Указанные пектины отличаются также характером распределения карбоксильных групп по длине пектиновой молекулы: в яблочных пектинах это распределение равномерное, а, например, в цитрусовых — нет.
Особенности химического строения пектиновых молекул, в частности, степень этерификации, определяют различия их физико-химических свойств, основными среди которых являются растворимость, гелеобразующая и комплексообразующая способность.
Растворимость пектинов в воде повышается с увеличением степени этерификации их молекул и уменьшением молекулярной массы. Пектовая кислота, в молекуле которой нет этерифицированных карбоксильных групп, в воде нерастворима. При комнатной температуре в условиях интенсивного перемешивания в 100 мл воды растворяется от 4 до 8 г пектина, при температуре 60—80°С — около 10 г, т. е. максимальная концентрация водных растворов пектина может составлять 10 %. Растворимость повышается в присутствии Сахаров. Из-за наличия в пектиновых молекулах диссоциирующих свободных карбоксильных групп их водные растворы имеют кислую реакцию (рН около 3,5).
Главное свойство, на котором основано применение пектинов в пищевых технологиях, — гелеобразующая способность.
Гелевая структура растворов пектинов образуется в результате взаимодействия пектиновых молекул между собой и зависит от особенностей строения молекулы — молекулярной массы, степени этерификации, характера распределения карбоксильных групп. Кроме того, на процесс гелеобразования влияют температура, рН среды и содержание дегидратирующих веществ.
Формирование пространственной структуры геля может происходить двумя путями:
• за счет изменения сил электростатического отталкивания пектиновых молекул в присутствии дегидратирующих веществ (сахарозы) в кислой среде (сахарно-кислотное гелеобразование);
• при участии ионов поливалентных металлов.
Тип ассоциации пектиновых молекул определяется степенью эте-рификации. Высокоэтерифицированные пектины образуют гели в присутствии кислоты (рН 3,1—3,5) при содержании сухих веществ (сахарозы) не менее 65 %, низкоэтерифицированные — в присутствии ионов поливалентных металлов, например кальция, независимо от содержания сахарозы в широком диапазоне рН (от 2,5 до 6,5). Пектины высокой степени этерификации образуют высокоэластичные гели, имеющие тенденцию к возвращению формы в исходное состояние после ее изменения при механическом сдвиге.
Пектины низкой степени этерификации в зависимости от концентрации ионов кальция могут давать различные по консистенции гели — от высоковязких (не восстанавливающих исходную форму после деформирования) до высокоэластичных.
Комплексообразующая способность (образование циклических комплексов поливалентных металлов) различных пектинов зависит от содержания свободных карбоксильных групп, т. е. степени этерификации пектиновых молекул, и не зависит от их молекулярной массы.
Способность пектиновых молекул связывать поливалентные катионы увеличивается при снижении степени их этерификации и повышении степени диссоциации свободных карбоксильных групп (т. е. при повышении рН среды), а по отношению к различным катионам изменяется в ряду (Paskins-Hurlburt et al., 1977)
Mg < Mn < Сг < Hg < Fe < Ni < Co < Cu < Zn < Sr< Cd < Ba < Pb.
Основные области применения пектинов связаны с их функциональными свойствами. Гелеобразующая способность используется в кондитерской и консервной промышленности при изготовлении желейных кондитерских изделий и гелеобразной фруктово-ягодной консервной продукции. К ним относятся различные желе, мармелады, зефиры и пастила, джемы, конфитюры, а также фруктовые начинки. На способности пектиновых молекул образовывать комплексы с белками основано их использование при получении кисломолочных продуктов (йогуртов и т. п.). Молекулы высокоэтерифициро-ванных пектинов могут образовывать пектин-протеиновые комплексы. При рН 4,0—4,2 они вступают, например, во взаимодействие с молекулами казеина молока, что приводит к изменению общего заряда белковых молекул и обеспечивает их физическую стабильность в кислой среде.
Технологическая функция стабилизатора проявляется молекулами пектина в таких дисперсных пищевых системах, как мороженое, майонезы, соки с мякотью. Аналогично некоторым видам модифицированных крахмалов пектины можно использовать в качестве низкокалорийного заменителя жиров в эмульсионных продуктах (наливные маргарины, майонезы).
Содержание пектинов в пищевых продуктах составляет от 0,03 до 2,0 %, т. е. от 0,3 до 20 г на 1 кг изделия.
В последнее время пектины широко используют в качестве профилактических средств для групп населения, проживающих в зонах риска отравления тяжелыми металлами и радионуклидами, благодаря способности низкоэтерифицированных пектинов образовывать комплексные соединения с ионами цинка, свинца, кобальта, стронция, радионуклидами.
Кроме того, будучи растворимыми пищевыми волокнами, пектины являются физиологически ценными пищевыми добавками (функциональными ингредиентами), присутствие которых в пищевых продуктах традиционного рациона способствует улучшению состояния здоровья. Специфическое физиологическое воздействие растворимых пищевых волокон связано с их способностью снижать уровень холестерина в крови, нормализовать деятельность желудочно-кишечного тракта, связывать и выводить из организма некоторые токсины и тяжелые металлы. Рекомендуемое суточное потребление пектиновых веществ в рационе здорового человека составляет 5—6 г.
Все перечисленные свойства пектинов позволяют отнести их к ряду важнейших физиологически ценных пищевых добавок.
Пектины (Е440а) — добавки природного происхождения, совершенно безвредны, их можно использовать в неограниченных количествах. Суточная доза амидированных пектинов (Е440b) регламентируется и не должна превышать 25 мг на 1 кг массы тела.
Как и все прочие пищевые добавки, коммерческие пектины должны соответствовать определенным показателям качества, которые регламентируются официальными требованиями к чистоте этих продуктов. Предписания международных организаций включают 10—11 химических показателей, главным из них является содержание га-лактуроновой кислоты, характеризующей содержание собственно пектина, которое должно быть не менее 65 %. Ко второй группе химических показателей, определяющих качество коммерческих пектинов, относится содержание тяжелых металлов (меди, цинка, свинца). Например, содержание свинца в пектинах не должно превышать 10 мг/кг продукта. Для низкоэтерифицированных пектинов, полученных путем аммонолиза, регламентируется степень амидирования, которая не должна превышать 25 %.
В соответствии с СанПиН 2.3.2.560—96 наряду с химическими показателями в стандартном пектине следует определять показатели микробиологической безопасности, по которым осуществляют контроль на отсутствие патогенных микроорганизмов.
ГАЛАКТОМАННАНЫ
Галактоманнаны представляют собой гетерогликаны, содержащиеся в семенах стручковых растений. Они предотвращают обезвоживание семян. Коммерческие препараты растительных галактоманнанов получили название камедей. Наибольшее распространение получили галактоманнаны семян двух видов растений: гуара (Cyamopsis tetragonolobus), произрастающего в Индии и Пакистане, и рожкового дерева (Ceratoma siligua), произрастающего на побережье Средиземного моря, [камедь рожкового дерева (Е410), гуаровая камедь (Е412)].
Эти камеди имеют сходное химическое строение и представляют собой нейтральные полисахариды, состоящие из (1,4)-(β-гликозидно связанных остатков маннозы, к которым 1,6-связями через равные интервалы присоединены боковые цепи, состоящие из единичных остатков α-D-галактозы. У камеди гуара, получившей название «гуаран», остаток галактозы присоединен к каждому второму остатку маннозы, а у камеди из бобов рожкового дерева — к каждому четвертому (рис. 3.3) Причем галактопиранозные структурные единицы распределены вдоль полимерной цепи маннана не равномерно, а в виде блоков, что особенно характерно для галактоманнанов рожкового дерева. Таким образом, полимерная цепь галактоманнанов имеет нерегулярную структуру с чередующимися линейными и разветвленными зонами. От характера распределения этих зон, а также от соотношения галактозы и маннозы зависят основные свойства галактоманнанов.
Технология получения коммерческих препаратов галактоманнанов основана на водной экстракции полисахаридов из измельченного растительного сырья с последующим отделением и очисткой экстракта, обработкой спиртом для выделения целевого продукта, который затем отфильтровывают, высушивают и измельчают
Растворимость галактоманнанов в воде зависит от особенностей их строения Линейный D-маннан, не содержащий боковых заместителей, проявляет свойства, подобные его химическому аналогу — целлюлозе, в частности, не растворяется в воде. Появление боковых цепей в полимерной молекуле обусловливает способность к образованию водных растворов, которая находится в корреляционной зависимости от степени замещения. Так, галактоманнаны с высокой степенью замещения первичных гидроксильных групп в остатках D-маннозы, представителем которых является гуаран, полностью гидратируют в холодной воде, тогда как галактоманнаны с ограниченной степенью замещения (камедь рожкового дерева) полностью растворяются только в горячей воде. Однако в обоих случаях процесс растворения является продолжительным Например, для приготовления раствора гуарана максимальной вязкости при температуре 25°С необходимо около 120 мин Ускорить процесс можно за счет интенсивного перемешивания или нагревания, при котором температура не должна превышать 80°С из-за потенциально возможной тепловой деструкции полимерных молекул Растворимость галактоманнанов в воде может быть снижена в присутствии других растворенных веществ, в связи с чем при создании пищевых систем галактоманнаны следует растворять в первую очередь.
Вязкость растворов галактоманнанов зависит от их концентрации. При низких концентрациях (до 0,5%) она имеет линейную зависимость, которая при дальнейшем повышении переходит в экспоненциальную (рис. 3.4).
Применение галактоманнанов в пищевых технологиях основано на трех ключевых свойствах, к которым относятся:
• способность образовывать вязкие водные растворы;
• синергическое взаимодействие с другими полисахаридами, приводящее к формированию гелей различной текстуры;
• способность регулировать процесс синерезиса. Способность камеди рожкового дерева повышать вязкость водных растворов известна с античных времен, когда древние египтяне использовали пасты измельченных бобов для бальзамирования мумий. Однако коммерческое применение этого препарата датируется началом нашего столетия. Причиной промышленного освоения гуаровых камедей, которое началось в сороковые годы нашего века, послужила нехватка камедей рожкового дерева.
2 остатка маннозы на каждый остаток галактозы
а
4 остатка маннозы на каждый остаток галактозы
б
Рис. 3.3. Фрагмент молекулы галактоманнанов:
а - камедь гуара, б— камедь рожкового дерева
Гуаровые камеди применяют при получении молочных продуктов, соусов и мучных изделий. Ее синергические смеси с карбоксиметилцеллюлозой, каррагинанами и ксантанами используют в производстве мороженого, сыров и других продуктов. Камедь рожкового дерева нашла применение в технологии молочных продуктов (низкожирные сыры, йогурты), низкокалорийных салатных заправок, мучных изделий, замороженных десертов. Синергический эффект этой камеди с ксантаном проявляется при образовании эластичных гелей, которые не формируются в случае самостоятельного применения этих загустителей. Введение камеди рожкового дерева в смеси с каррагинанами позволяет изменить текстуру геля, обеспечивая ей эластичность. Дозировки галактоманнанов в пищевых продуктах обычно составляют 0,05-1,0%.
Кроме рассмотренных выше камедей гуара и рожкового дерева статус пищевых добавок получили еще несколько растительных камедей, выполняющих в пищевых системах функции загустителей и стабилизаторов. К ним относятся: камедь карайи (Е416), гуммиарабик (Е414), камедь гхатти (Е419), камедь трагаканта (Е413) и камедь тары (Е417). Однако области этих камедей использования значительно уже.
Большинство галактоманнанов, подобно производным целлюлозы и пектинам, не расщепляется в желудочно-кишечном тракте, поэтому они — относительно безвредные пищевые добавки. Уровень их содержания в пищевых продуктах определяется технологическими задачами и регламентируется соответствующими технологическими инструкциями. Практически единственное исключение составляет камедь карайи, для которой установлены нормативы ее введения в пищевые продукты (табл. 3.12).
Рис. 3.4.Зависимость вязкости растворов галактоманнанов от концентрации
Таблица 3.12