Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Перевод дробной части числа

Системы счисления

Понятие системы счисления

Системы счисления (c/c) делятся на позиционные и непозиционные. В непозиционных системах вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен десяти.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая – 7 единиц, а третья – 7 десятых долей единицы. Сама же запись числа 757,7 означает сокращенную запись выражения 700 + 50 + 7 + 0,7 = 7 ∙ 102 + 5 ∙ 101 + 7 ∙100 + 7 ∙ 10–1 = 757,7.

Основание позиционной c/c – это количество различных знаков или символов, используемых для изображения цифр в данной системе. За основание системы можно принять любое натуральное число. Следовательно, возможно бесчисленное множество позиционных систем: двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения an –1qn –1 + an –2qn –2 +... + a 1q 1 + a 0q 0 + a –1q –1 +... + a m q m , где n и m – число целых и дробных разрядов, соответственно.

Основание с/с соответствует количеству цифр (знаков), используемых для записи чисел в этой с/с. Например, основанием десятичной с/с есть число 10, и только десять цифр (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) используются при записи чисел в этой с/с. В двоичной с/с используются две цифры – 0 и 1, в шестнадцатеричной – 16, причем для чисел 10, 11, 12, 13, 14, 15 в этой с/с введены дополнительные цифры (знаки) – A, B, C, D, E, F, соответственно, т.к. традиционно используемых цифр недостаточно.

Основание 10 не слишком удобно (в цепях электрических схем необходимо для этого иметь 10 различных сигналов). С технической точки зрения, чем меньше сигналов в схеме, тем лучше. Наименьшее основание, которое может быть у позиционной с/с, – это 2. Поэтому двоичная с/с широко используется в современной вычислительной технике, в устройствах автоматики и связи.

Кроме десятичной с/с для «общения с компьютером» широко используются системы с основанием, являющимся целой степенью числа 2, а именно двоичная, восьмеричная и шестнадцатеричная.

Полезно запомнить запись в этих системах счисления первых двух десятков целых чисел (табл. 1.1).

 

Таблица 1.1

Представление чисел в с/с

Десятичная с/c Двоичная с/c Восьмеричая с/c Шестнадцатиричная с/c
       
       
       
       
       
       
       
       
       
       
      А
      B
      C
      D
      E
      F
       
       

 

Как видно из таблицы, недостатком 2 с/с является быстрый рост числа разрядов, необходимых для записи чисел. В восьмеричной и шестнадцатеричной с/c требуется соответственно в три (восьмеричная) и в четыре (шестнадцатеричная) раза меньше разрядов, чем в двоичной системе (ведь числа 8 и 16 – соответственно, третья и четвертая степени числа 2).

 

Перевод чисел

 

Перевод из 8-й и 16-й в 2-ю с/c

Для перевода достаточно каждую цифру числа заменить эквивалентной ей двоичной триадой (тройкой цифр) или тетрадой (четверкой цифр).

Пример

502(8 c/c) →? (2 c/c)

502(8 c/c) = 101000010 (2 c/c)

Перевод из 2-й с/c в 8-ю и 16-ю

Для перевода нужно разбить число влево и вправо от последнего разряда (или запятой) на триады или тетрады и каждую такую группу заменить соответствующей восьмеричной или шестнадцатеричной цифрой. В случае необходимости неполные триады дополняются нулями.

Пример

1111110(2 c/c) →? (8 c/c)

1111110 (2 c/c) = 001111110 (2 c/c) = 176(8 c/c)

1111010101,1100(2 c/c) →? (16 c/c)

001111010101, 1100 (2 c/c) = 3D5,C(16 c/c).

Перевод из произвольной с/с в 10-ю и наоборот

Пусть имеется с/с с основанием k и некоторое число a 1 ...an в этой с/с, где a 1,..., an – цифры этого числа. Данное число можно представить в виде: a 1 kn –1 +a 2kn – 2 +...+an k 0.

Пример

110011(2 c/c) →? (10c/c)

110011(2 c/c) = 1 ∙ 10101+1 ∙ 10100+0 ∙ 1011+0 ∙ 1010+1 ∙ 101+1 ∙ 100(2 c/c)=

=1∙ 25+1∙ 24+0∙ 23+0∙ 22+1∙ 21+1∙ 20 (10 c/c)= 32 + 16 + 2 + 1 = 51(10 c/c),

1216,04(8 c/c) →? (10 c/c)

1216,04(8 c/c) = 1 ∙ 83 + 2 ∙ 82 + 1 ∙ 81 + 6 ∙ 80+4 ∙ 8–2= 512 + 128 + 8 + 6 + 0,0625 = 654,0625(10 c/c).

Перевод из 10 с/c в произвольную

Данный алгоритм является обратным к алгоритму, рассмотренному выше. Исходное число делится на основание с/с, в которую требуется перевести число. Первый шаг: разделить исходное число на r (основание новой с/c), зафиксировать остаток от деления (число от 0 до r – 1) и частное. Второй шаг: если частное больше r, то снова разделить его на r, продолжая фиксировать остаток от деления. Процесс деления частных продолжать до тех пор, пока частное не станет меньше r. Третий шаг: все полученные в процессе деления остатки от деления и последнее частное будут образовывать цифры исходного числа в с/с с основанием r. Выписав все найденные цифры в обратном порядке (начиная с последнего частного), получим искомое представление числа в новой с/c.

Например, требуется 25(10 c/c) перевести в 2-ю с/c. Согласно алгоритму, получаем 11001(2 c/c). Проверим результат:

25(10 c/c) = 11001(2 c/c) = 1 ∙ 24 + 1 ∙ 23 + 0 ∙ 22 + 0 ∙ 21 + 1 ∙ 20 = 25(10 c/c).

Перевод дробной части числа

Чтобы правильную дробь перевести из с/c с основанием r в c/c с основанием q необходимо последовательно умножать дробную часть (сначала самого числа, а потом получающихся произведений) на новое основание с/c q до тех пор, пока: либо дробная часть получаемого произведения не станет равна нулю; либо не будет достигнута нужная точность (заданное число цифр после запятой). В новой с/c число запишется в виде последовательности целых частей получаемых произведений, начиная с первого. Важнопомнить, что все действия производятся в исходной с/c.

Пример

0,3125(10 c/c) →? (8 c/c)

0,3125(10 c/c) = 0,24(8 c/c)

При переводе смешанной дроби из одной с/с в другую, отдельно по своим правилам, переводится целая часть и отдельно дробная, а результаты затем приписываются друг к другу через точку.



<== предыдущая лекция | следующая лекция ==>
Авторы книги были членами религиозной корпорации, обосновавшейся в монастыре Пор-Рояль. | Интеллектуально-познавательная деятельность.
Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 503 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2268 - | 2155 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.