Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Накопители на магнитных лентах




Накопители на магнитных лентах широко применялись до появления надежных и быстрых магнитных дисков. В этом виде накопителей носителем является полиэтиленовая лента, на которую нанесен слой магнитного вещества. Первые персональные компьютеры в качестве внешних накопителей использовали обычные бытовые кассетные магнитофоны, в которых в качестве носителя использовалась обычная аудиокассета.

В современных компьютерах используются высокоскоростные ленточные накопители — стримеры, в которых на специальных кассетах с магнитной лентой могут храниться гигабайты информации. Информация с магнитной ленты читается не в произвольном порядке, а последовательно, то есть для того чтобы считать последнюю порцию данных, необходимо прочитать и все предыдущие. Поэтому стримеры используются в основном для копирования и долговременного хранения информации на случай аварийных ситуаций (резервное копирование).

 

Карта памяти (флеш-память) основана на некоторых электрических свойствах вещества и позволяет хранить на кристаллах площадью несколько квадратных миллиметров большие объемы информации.

Флеш-память энергонезависима. Обладая низким энергопотреблением при чтении и записи данных, высокой скоростью и низкой ценой, флеш-намять обладает таким недостатком, как ограниченное число циклов чтения-перезаписи (несколько десятков тысяч раз).

В настоящее время флеш-намять используется в бытовых цифровых устройствах (цифровых фотоаппаратах, видеокамерах, мобильных телефонах и т. д.) и в качестве внешней памяти персональных компьютеров. В настоящие временя флеш-память вытеснила флоппи-диски в качестве основного способа обмена информацией между ПК.

Другие устройства накопления и хранения информации

Кроме вышеперечисленных основных устройств накопления и хранения информации существуют некоторые другие, по разным причинам менее популярные.

К таким устройствам относятся:

- магнитооптические диски;

- бернулли-диски;

- устройства резервирования данных;

- некоторые другие устройства.

Все эти устройства имеют разные емкости, скорости доступа к информации, свои минусы и плюсы, а также разную цену. У них есть свои ограничения, но есть и несомненные достоинства. Одно у них всех есть общее - эти устройства были созданы для хранения, накопления и резервирования данных.

 

 

1.3 Классификация запоминающих устройств.

В настоящее время выделяются следующие запоминающие устройства:

По форме записанной информации:

· аналоговые;

· цифровые.

По устойчивости записи и возможности перезаписи:

· Постоянные (ПЗУ), содержание которых не может быть изменено конечным пользователем. ПЗУ в рабочем режиме допускает только считывание информации;

· Записываемые (ППЗУ), в которые конечный пользователь может записать информацию только один раз;

· Многократно перезаписываемые (ПППЗУ);

· Оперативные (ОЗУ) — обеспечивают режим записи, хранения и считывания информации в процессе её обработки. Быстрые, но дорогие ОЗУ (SRAM) строят на триггерах, более медленные, но более дешёвые разновидности ОЗУ — динамические ЗУ (DRAM) строят на элементах состоящих из ёмкости (конденсатора) и полевого транзистора, используемого в качестве ключа разрешения записи-чтения. В обоих видах ЗУ информация исчезает после отключения от источника питания.

По энергозависимости:

· энергозависимые, записи в которых не стираются при снятии электропитания;

· энергозависимые, записи в которых стираются при снятии электропитания;

· статические, которым для хранения информации достаточно сохранения питающего напряжения;

· динамические, в которых информация со временем разрушается (деградирует), и, кроме подачи электропитания, необходимо производить её периодическое восстановление (регенерацию).

По типу доступа:

· С последовательным доступом;

· С произвольным доступом;

· С прямым доступом;

· С ассоциативным доступом (специальные устройства, для повышения производительности баз данных).

По геометрическому исполнению:

· дисковые (магнитные диски, оптические, магнитооптические);

· ленточные (магнитные ленты, перфоленты);

· барабанные (магнитные барабаны);

· карточные (магнитные карты, перфокарты, флэш-карты, и др.);

· печатные карты.

По физическому принципу:

· перфорационные (с отверстиями или вырезами);

· перфокарта;

· перфолента;

· с магнитной записью;

· магнитные сердечники;

· магнитные диски;

· жёсткий магнитный диск;

· гибкий магнитный диск;

· магнитные ленты;

 

· магнитные карты;

· оптические;

· CD;

· DVD;

· HD-DVD;

· Blue-Ray Disc;

· магнитооптические;

· CD-MO;

· использующие накопление электростатического заряда в диэлектриках (конденсаторные ЗУ, запоминающие электроннолучевые трубки);

· использующие эффекты в полупроводниках;

· звуковые и ультразвуковые (линии задержки);

· использующие сверхпроводимость (криогенные элементы);

· другие.

По количеству устойчивых (распознаваемых) состояний одного элемента памяти:

· двоичные;

· троичные;

· десятичные.

2. Обзор внешних магнитных носителей.

2.1 Накопители прямого доступа

 

К ЗУ прямого доступа в номенклатуре технических средств ЭВМ относятся устройства хранения информации на магнитных дисках и барабанах. Основная особенность их заключалась в том, что время поиска любой записи мало зависит от ее местоположения на носителе. Каждая физическая запись на носителе имеет адрес, по которому обеспечивается непосредственный доступ к ней, минуя остальные записи.

Это свойство ЗУ прямого доступа отличает их от ЗУ на магнитной ленте и от всех других типов устройств ввода - вывода ЭВМ.

Во всех накопителях прямого доступа, как и в накопителях на магнитной ленте, использовался принцип электромагнитной записи информации на движущийся носитель. Носителями информации в накопителях прямого доступа служили магнитные диски или барабаны, которые в рабочем состоянии постоянно вращались с большой скоростью. Магнитные диски собирались зачастую в виде пакета из нескольких дисков. Накопители на магнитных дисках подразделяются на две группы: накопители на сменных магнитных дисках, на которых можно осуществлять быструю смену пакетов магнитных дисков и накопители на постоянных магнитных дисках, в которых пакет магнитных дисков или один диск стационарно устанавливается в заводских условиях и не может быть оперативно заменен.

ЗУ с накопителями на постоянных магнитных дисках и на магнитных барабанах использовались в машине как устройства внешней памяти большой емкости. ЗУ на сменных магнитных дисках по системотехническим возможностям подобны ЗУ на магнитной ленте. Они служили только внешней памятью, но и устройствами ввода вывода информации. Пакеты сменных магнитных дисков удобны в хранении. Из них на вычислительных центрах создались библиотеки, что позволило как бы неограниченно наращивать емкость внешней памяти вычислительных систем.

Сравнительный анализ основных технических и функциональных параметров ЗУ на магнитной ленте и ЗУ прямого доступа показал, что они имеют примерно одинаковую емкость и скорость обмена информацией при записи и считывании. Несомненным преимуществом ЗУ прямого доступа являлось малое время поиска информации на носителе. Однако стоимость хранения единицы информации на магнитных дисках и барабанах была примерно на порядок больше, чем на магнитных лентах.

 

2.2 Накопители на гибких и жестких магнитных дисках

· Накопители на гибких дисках.

Одни из старейших периферийных устройств ПК - накопители на гибких дисках (Floppy Disk Drive), так называемые флоппи-диски. Носителем информации служат дискеты диаметрами 3,5”, 5,25”и 8”. В наши дни дискеты 5,25” используются крайне редко, 8” не используются совсем. Для всех форматов конструкция дискет одинакова. На пластмассовый диск, расположенный в пластиковом футляре наносится магнитный слой для записи информации.
На дискетах размером 5,25 дюйма имеется прорезь для защиты от записи. Если эту прорезь заклеить, то на дискету нельзя будет произвести запись. А на дискетах размером 3,5 дюйма имеется специальный переключатель – защелка, разрешающая или запрещающая запись на дискету. Запись на дискету разрешена, если отверстие, закрываемое защелкой, закрыто, и запрещена, если это отверстие открыто.
Существует понятие “плотность записи”. От нее зависит объем записываемой информации. Существуют стандарты SS/SD, DS/DD, DS/HD для 5/25” объем записываемой информации от 180 Кб до 1.2 Мб. DD, HD и ED для 3,5” дискет, объем записываемой информации от 720 Кб до 2,88 Мб.
Чаще всего встречаются дискеты 3,5” HD. Как носители информации дискеты почти изжили себя. Малый объем, небольшая скорость чтения/записи, ненадежность делают их применение невыгодным. Однако они обладают большой мобильностью.

 

· Накопители на жёстких дисках

Накопитель на жёстких магнитных дисках (англ. HDD — Hard Disk Drive) или винчестерский накопитель — это наиболее массовое запоминающее устройство большой ёмкости, в котором носителями информации являются круглые алюминиевые пластины — платтеры, обе поверхности которых покрыты слоем магнитного материала. Используется для постоянного хранения информации — программ и данных.

По сравнению с дискетами они имеют некоторые преимущества:
- объем записываемой информации многократно превосходит возможности гибких дисков,
- скорость чтения и записи также намного больше,
- надежность гораздо более высока.

Накопители на жестких магнитных дискахсодержат несколько дисков, объединенных в пакет. Чаще всего такой пакет включает 4-6 дисков диаметром 5,25 или (в портативных ПЭВМ) 3 дюйма. НЖМД является несменяемым, располагается внутри системного блока.

В НЖМД магнитные головки, объединенные в блок, перемещаются одновременно в радиальном направлении по отношению к дискам. Дорожки с одинаковыми номерами на разных поверхностях дисков образуют цилиндр. Цилиндр имеет тот же номер, что и объединенные им дорожки. Любой диск имеет физический и логический формат. Физический формат диска определяет размер сектора (в байтах), число секторов на дорожке (или - для жестких дисков -в цилиндре), число дорожек (цилиндров) и число сторон.

Логический формат диска задает способ организации информации на диске и фиксирует размещение информации различных типов.

В отличие от гибких дисков, физический и логический форматы которых устанавливаются в процессе форматирования дискеты, жесткие диски поступают к потребителю с определенным физическим форматом. Логическая структура жесткого диска устанавливается пользователем, причем это должно быть сделано до применения этого диска операционной системой. Установка логической структуры диска выполняется в два этапа. Сначала жесткий диск разбивается на части, каждая из которых может использоваться своей операционной системой. Далее каждую из этих частей необходимо отформатировать в соответствии с требованиями той операционной системы, для которой она предназначена.

Наиболее часто применяются форматы данных, соответствующие фиксированным числам секторов на одной дорожке, например, форматы с 17 или 32 секторами на дорожке. При этом емкость информации в одном секторе колеблется от 512 до 1024 байт.

Для организации хранения и учета данных на диске можно использовать различные схемы, каждая из которых имеет свои достоинства и недостатки с точки зрения эффективности использования пространства памяти диска, скорости доступа, безопасности и качества хранения данных.

В настоящее время наиболее распространены НЖМД емкостью от 80 до 2400 Мбайт. Вместе с тем нередкими стали конфигурации ПЭВМ, включающие НЖМД типа "винчестер" емкостью в 500 Мбайт и даже в 1 Гбайт.

Важным параметром для пользователя является время доступа, характеризующее скорость чтения и записи информации на диски. Для наиболее распространенных НЖМД оно колеблется от 14 до 70 мкс. Реальная скорость работы НЖМД в большой степени зависит от типа используемой программы. Так, обработка больших массивов информации, требующая многократного поиска одиночных сведений, может неожиданно для пользователя занять весьма значительное время. Еще более продолжительной может оказаться обработка сложных изображений.

 

2.3 Накопитель на оптических дисках

В накопителях на оптических дисках в качестве носителя используется диск, покрытый отражающим веществом со специальными оптическими свойствами. Наиболее распространенным видом оптических накопителей являются CD, CD-ROM, DVD, Blu-ray

Стандартный компакт-диск состоит из основы, отражающего и защитного слоев. Основа выполнена из прозрачного поликарбоната, на котором методом прессования сформирован информационный рельеф. Поверх рельефа напыляется металлический отражающий слой. Отражающий слой покрывается сверху защитным слоем лака — так, чтобы вся металлическая поверхность была защищена от контакта с внешней средой.

Информация записана на диске в виде спиральной дорожки, идущей от центра к краю диска, на которой расположены углубления (так называемые питы). Информация кодируется чередованием питов (условно — логической единицей) и промежутков между ними (условно логических нулей). Лазерный луч головки привода проходит по дорожке и по характеру отраженного луча считывает информацию.

Наиболее распространены диски CD-ROM, па которые информация наносится фабрично и не может быть изменена.

Накопитель CD-ROM содержит:

· электродвигатель, который вращает диск;

· оптическую систему, состоящую из лазерного излучателя, оптических линз и датчиков и предназначенную для считывания информации с поверхности диска;

· микропроцессор, который руководит механикой привода, оптической системой и декодирует прочитанную информацию в двоичный код.

Компакт-диск раскручивается электродвигателем. На поверхность диска с помощью привода оптической системы фокусируется луч из лазерного излучателя. Луч отражается от поверхности диска и сквозь призму подается на датчик. Световой поток превращается в электрический сигнал, который поступает в микропроцессор, где он анализируется и превращается в двоичный код.

Основные характеристики CD-ROM:

· скорость передачи данных - измеряется в кратных долях скорости проигрывателя аудио компакт-дисков (150 Кбайт/сек) и характеризует максимальную скорость с которой накопитель пересылает данные в оперативную память компьютера, например, 2-скоростной CD-ROM (2x CD-ROM) будет считывать данные с скоростью 300 Кбайт/сек., 50-скоростной (50x) - 7500 Кбайт/сек.;

· время доступа - время, нужное для поиска информации на диске, измеряется в миллисекундах.

Основной недостаток стандартных CD-ROM - невозможность записывания данных, но существуют устройства однократной записи CD-R и многоразовой записи CD-RW.

Существуют также диски и приводы CD-R, которые позволяют однократно записывать CD на специальные заготовки, и CD-RW, которые могут записывать и читать компакт-диски. Используются для многоразовой записи данных, причем можно как просто дописать новую информацию на свободное пространство, так и полностью перезаписать диск новой информацией (предудущие данные уничтожаются). Как и в случае с накопителями CD-R, для записи данных необходимо установить в системе специальные программы, причем формат записи совместимый с обычным CD-ROM. Скорость записи современных накопителей CD-RW составляет 2х-4х.

Компакт-диски имеют низкую цену, высокое быстродействие и срок хранения данных, измеряемый десятками лет.

Накопитель DVD (Digital Video Disk)

Устройство для чтения цифровых видеозаписей. Внешне DVD-диск похож на обычный CD-ROM (диаметр - 120 мм, толщина 1,2 мм), однако отличается от него тем, что на одной стороне DVD-диска может быть записано до 4,7 Гбайт, а на двух - до 9,4 Гбайт. В случае использования двухслойной схемы записи на одной стороне можно разместить уже до 8,5 Гбайт информации, соответственно на двух сторонах - около 17 Гбайт. DVD-диски допускают перезапись информации.

Однослойный диск Blu-ray (BD) может хранить 23.3, 25, 27 или 33 Гб, двухслойный диск может вместить 46,6, 50, или 54 Гб. Также в разработке находятся диски вместимостью 100 Гб и 200 Гб с использованием соответственно четырёх и шести слоёв. В дополнение к стандартным дискам размером 120 мм, выпущены варианты дисков размером 80 мм для использования в цифровых фото- и видеокамерах. Планируется, что их объём будет достигать 15 Гб для двухслойного вариан

Таблица 1

Физический размер Однослойная вместимость Двухслойная вместимость
120 мм 23.3/25/27 Гб 46.6/50/54 Гб
80 мм 7.8 Гб 15.6 Гб

 

В технологии Blu-ray для чтения и записи используется сине-фиолетовый лазер с длиной волны 405 нм. Обычные DVD и CD используют красный и инфракрасный лазеры с длиной волны 650 нм и 780 нм соответственно.

Такое уменьшение позволило сузить дорожку вдвое по сравнению с обычным DVD-диском — до 0,32 микрон — и увеличить плотность записи данных.

Более короткая длина волны сине-фиолетового лазера позволяет хранить больше информации на 12 см дисках того же размера, что и у CD/DVD, скорость считывания до 432 Мбит/c.

Из-за того, что на дисках Blu-Ray данные расположены слишком близко к поверхности, первые версии дисков были крайне чувствительны к царапинам и прочим внешним механическим воздействиям из-за чего они были заключены в пластиковые картриджи. Этот недостаток вызывал большие сомнения относительно того, сможет ли формат Blu-ray противостоять стандарту HD DVD— своему основному конкуренту. HD DVD помимо своей более низкой стоимости может нормально существовать без картриджей, также как форматы DVD и CD, что делает его более понятным для покупателей, а также более интересным для производителей и дистрибьюторов, которые могут быть обеспокоены дополнительными затратами из-за картриджей.

В формате Blu-ray применен экспериментальный элемент защиты под названием BD+, который позволяет динамически изменять схему шифрования. Стоит шифрованию быть сломанным производители могут обновить схему шифрования, и все последующие копии будут защищены уже новой схемой. Таким образом, единичный взлом шифра не позволит скомпрометировать всю спецификацию на весь период её жизни. Все Blu-ray проигрыватели смогут выдавать полноценный видеосигнал только через защищённый шифрованием интерфейс.

Существуют также накопители, в которых применяется комбинация магнитных и оптических свойств вещества. Такие накопители называют магнитооптическими.

 

 

2.4 Карты памяти.

Наиболее распространенные типы карт памяти:
CompactFlash (CF), MultiMeda Card, SD Card, Memory Stick, SmartMedia, xD-Picture Card, PC-Card (PCMCIA или ATA-Flash). Существуют и другие портативные форм-факторы флэш-памяти, однако встречаются они намного реже перечисленных.

Флэш-карты бывают двух типов: с параллельным (parallel) и с последовательным (serial) интерфейсом.

Параллельный:

· PC-Card (PCMCIA или ATA-Flash)

· CompactFlash (CF)

· SmartMedia (SSFDC)

Последовательный:

· MultiMedia Card (MMC)

· SD-Card (Secure Digital - Card)

· Sony Memory Stick

Самым старым и самым большим по размеру следует признать PC Card (ранее этот тип карт назывался PCMCIA [Personal Computer Memory Card International Association]). Карта снабжена ATA контроллером. Благодаря этому обеспечивается эмуляция обычного жесткого диска. В настоящее время флэш-память этого типа используется редко. PC Card бывает объемом до 2GB. Существует три типа PC Card ATA (I, II и III). Все они отличаются толщиной (3,3 5,0 и 10,5 мм соответственно). Все три типа обратно совместимы между собой (в более толстом разъеме всегда можно использовать более тонкую карту, поскольку толщина разъема у всех типов одинакова – 3,3 мм). Питание карт - 3,3В и 5В. ATA-flash как правило относится к форм фактору PCMCIA Type I.

Таблица 2

Тип Длина Ширина Толщина Использование
Type I 85,6 мм 54 мм 3,3 мм Память (SRAM, DRAM, Flash и т. д)
Type II 85,6 мм 54 мм 5 мм Память, устройства ввода-вывода (модемы, сетевые карты и т. д)
Type III 85,6 мм 54 мм 10,5 мм Устройства хранения данных, жёсткие диски

 

Конструкция карт CompactFlash обеспечивает эмуляцию жёсткого диска с АТА интерфейсом. Разъёмы Compact Flash расположены на торце карты, электрически и функционально повторяя назначение контактов PCMCIA. Карты Compact Flash поддерживают два напряжения: 3.3В и 5В, любая карта

SmartMedia (SSFDC - Solid State Floppy Disk Card) 8 из 22-х контактов карты используются для передачи данных, остальные используются для питания микросхемы, управления и несут на себе другие вспомогательные функции.

Толщина карты всего лишь 0,76мм.

SmartMedia - единственный формат флэш-карт, не имеющий встроенного контроллера.

На карте имеется специальное углубление (в форме кружочка). Если в это место приклеить соответствующей формы токопроводящий стикер, то карта будет защищена от записи.

По сравнению с другими картами флэш-памяти, в которых используется полупроводниковая память, размещённая на печатной плате вместе с контроллером и другими компонентами, SmartMedia устроена очень просто. xD-Picture Card - XD следует расшифровывать как e X treme D igital. Теоретически емкость карт xD может достигать 8ГБ.

Сообщается, что скорость записи данных на xD будет достигать 3 Мбайт/с, а скорость чтения - 5 Мбайт/с.

Размеры карты: 20 х 25 х 1,7 мм. Контакты у XD расположены, так же как и у SmartMedia, на лицевой части карты. Карта разработана в качестве замены SmartMedia и продается по сравнимой со SmartMedia цене (возможно, из-за отсутствия встроенного контроллера), благо чипы для xD-Picture Card производятся Toshiba. Теоретический предел емкости – 8GB.

Карты MMC содержат 7 контактов, реально из которых используется 6, а седьмой формально считается зарезервированным на будущее. По стандарту MMC способна работать на частотах до 20МГц. Карточка состоит из пластиковой оболочки и печатной платы, на которой расположена микросхема памяти, микроконтроллер и разведены контакты.

MultiMedia Card работает с напряжением 2.0В - 3.6В, однако спецификацией предусматриваются карты с пониженным энергопотреблением - Low Voltage MMC (напряжение 1.6В - 3.6В).

Стандарт SPI определяет только разводку, а не весь протокол передачи данных. По этой причине в MMC SPI используется подмножество команд протокола MMC. Режим SPI предназначен для использования в устройствах, которые используют небольшое количество карт памяти (обычно одну). преимущество использования режима SPI состоит в возможности использования уже готовых решений, уменьшая затраты на разработку до минимума. Недостаток состоит в потере производительности на SPI системах, по сравнению с MMC.

SD-Card работает с напряжением 2,0В - 3,6В, однако спецификацией предусматриваются SDLV-карты (SD Low Voltage) с пониженным энергопотреблением (напряжение 1,6В - 3,6В), кроме того, спецификацией предусмотрены карты толщиной 1,4мм, без переключателя защиты от записи.

Фактически карточки SD являются дальнейшим развитием стандарта MMC. Флэш-карты SD обратно совместимы с MMC (в устройство с разъемом SD можно вставить MMC, но не наоборот).

Особенных технических инноваций в MemoryStick не заметно, разве что переключатель защиты от записи (Write Protection Switch) выполнен действительно грамотно, да контакты хорошо упрятали.

На питание у MemoryStick отведено 4 из 10 контактов, еще 2 контакта зарезервированы, один контакт используется для передачи данных и команд, один для синхронизации, один для сигнализации состояния шины (может находиться в 4-х состояниях), а один для определения того, вставлена карта, или нет. Карта работает в полудуплексном режиме. Максимальная частота, на которой может работать карта - 20МГц.

Зарезервированные контакты (по непроверенным данным) используются в устройствах на базе интерфейса MemoryStick.

Кроме вышеперечисленных форм-факторов флэш-памяти, флэш так же бывает в виде модулей SIMM и DIMM. Такие модули часто используются в факсимильных аппаратах, принтерах, и т.п.

Часто можно встретить флэш-память в виде устройств, заменяющих обычные жёсткие диски (Disk On Module (DOM)-накопители). Такие накопители имеют стандартный интерфейс IDE и используются в устройствах, работающих в экстремальных условиях (повышенная тряска, пыль и т.п.) – там, где обычные жесткие диски, по тем, или иным причинам применять не желательно.

Для переноса данных удобно использовать накопители с интерфейсом USB -

новый тип внешнего носителя информации для компьютера, появившийся благодаря широкому распространению интерфейса USB (универсальной шины) и преимуществам микросхем Flash памяти. Достаточно большая емкость при небольших размерах, энергонезависимость, высокая скорость передачи информации, защищённость от механических и электромагнитных воздействий, возможность использования на любом компьютере - всё это позволило USB Flash Drive заменить или успешно конкурировать со всеми существовавшими ранее носителями информации.

Флэш-память наиболее известна применением в USB флэш-носителях. В основном применяется NAND тип памяти, которая подключается через USB по интерфейсу USB. Данный интерфейс поддерживается всеми ОС современных версий.

Благодаря большой скорости, объёму и компактным размерам USB флэш-носители полностью вытеснили с рынка дискеты.

Они компактны, лёгко перезаписывают файлы и имеют большой объём памяти (от 32 Мб до 128 Гб).

Сейчас активно рассматривается возможность замены жёстких дисков на флэш‑память. В результате компьютер будет включаться мгновенно, а отсутствие движущихся деталей увеличит срок службы. Распространение ограничивает высокая цена за Гб и меньший срок годности, чем у жёстких дисков из-за ограниченного количества циклов записи.

 


Заключение.

В этой работе были изучены внешние запоминающие устройства как самые надежные и удобные средства хранения информации.

В ходе исследования были проанализированы технические характеристики внешних запоминающих устройств, начиная от накопителей на магнитных лентах и заканчивая самыми современными ВЗУ. Одним из наиболее интересных и приковывающих к себе внимание ВЗУ является жесткий диск, который, располагаясь внутри компьютера, одновременно является внешним запоминающим устройством. По сравнению с другими ВЗУ они имеют преимущества:
- объем записываемой информации многократно превосходит возможности гибких дисков
- скорость чтения и записи также намного больше,
- надежность гораздо более высока.

Также заслуживает внимание Флеш-память.Флеш-память энергонезависима. Обладая низким энергопотреблением при чтении и записи данных, высокой скоростью и низкой ценой, флеш-намять обладает таким недостатком, как ограниченное число циклов чтения-перезаписи (несколько десятков тысяч раз).

Современные технологии записи информации продолжают стремительно развиваться. Особенно в последние годы. Прогресс движется в сторону увеличения ёмкости, увеличения скорости и надёжности систем сохранения информации. Те решения, которые ещё вчера были приемлемы только для серверов, сегодня становятся нормальными для обычных домашних рабочих станций или даже с трудом удовлетворяющими их потребностям.

Из всего этого можно извлечь следующий урок: рынок оптических устройств хранения данных всегда будет находиться в состоянии изменения, а каждые 4—5 лет нас ожидает радикальная смена технологий. Таким образом, с точки зрения покупателей, оптические запоминающие устройства не отличаются от любой другой компьютерной технологии, и разобраться в них будет не сложнее, но и не легче.

 


Список использованной литературы.

1. Каймин В.А. Информатика: Учебник. - М.: ИНФРА-М, 2000.

 

2. Кушниренко А.Г., Лебедев Г.В., Сворень Р.А. Основы информатики и вычислительной техники: Учеб. для средн. учеб. заведений. — М.: Просвещение, 1993Журнал «MegaPlus», 2007.

 

3. Леонтьев В.П. Новейшая энциклопедия персонального компьютера 2003. – М.: ОЛМА-ПРЕСС, 2003.

 

4. Титович С.В., Лысак Н.А. Электронная энциклопедия персонального компьютера

 

5. Угринович Н.Д. «Информатика и информационные технологии» 2009. – Издательство «БИНОМ. Лаборатория знаний».

 

6. http://edu.dvgups.ru/MetDoc/Its/Izisk/ALang/Html/Part1.htm

 

7. http://ru.wikipedia.org/wiki/%C7%E0%EF%EE%EC%E8%ED%E0%FE%F9%E5%E5_%F3%F1%F2%F0%EE%E9%F1%F2%E2%EE

 

8. http://shkolo.ru/nakopiteli-na-opticheskih-diskah/

 

http://informatique.org.ru

http://shkolo.ru

http://uchinf.ru

http://qendacs.ru

http://pcabc.ru

 





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 1814 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2298 - | 2047 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.