При решении задач защиты от энергетических воздействий выделяют источник, приемник энергии и защитное устройство, которое уменьшает до допустимых уровней поток энергии к приемнику.
Защитное устройство обладает способностями отражать, поглощать, быть прозрачным по отношению к потоку энергии и характеризуется энергетически коэффициентами поглощения, отражения, коэффициентом передачи. Поэтому можно выделить следующие принципы защиты:
1) защита осуществляется за счет отражательной способности защитных устройств;
2) защита осуществляется за счет поглощательной способности защитного устройства;
3) защита осуществляется с учетом свойств прозрачности защитных устройств.
На практике принципы обычно комбинируют, получая различные методы защиты (в частности, изоляцией и поглощением).
Методы изоляции используют тогда, когда источник и приемник энергии, являющийся одновременно объектом защиты, располагаются с разных сторон от защитного устройства. В основе этих методов лежит уменьшение прозрачности среды между источником и приемником. При этом можно выделить два основных метода изоляции: уменьшение прозрачности среды достигается за счет поглощения энергии или за счет высокой отражательной способности защитного устройства.
В основе методов поглощения лежит принцип увеличения потока энергии, прошедшего в защитное устройство. Есть два вида поглощения энергии защитным устройством: поглощение энергии самим защитным устройством за счет ее отбора от источника в той или иной форме, в том числе в виде необратимых потерь и поглощение энергии в связи с большой прозрачностью защитного устройства.
Например, при воздействии такого фактора опасности как вибрация, в вибросистеме действуют силы инерции, трения, упругости и вынуждающие. Для защиты от вибрации используют метод виброизоляции, когда между источником вибрации и ее приемником, являющимся одновременно объектом защиты, устанавливают виброизолятор с малым коэффициентом передачи.
Защита от вибрации методами поглощения осуществляется в виде динамического гашения и вибропоглощения. В первом случае виброэнергия поглощается защитным устройством, отбирающим виброэнергию от источника на себя (есть инерционный динамический виброгаситель). Защитное устройство, увеличивающее рассеяние энергии в результате повышения диссипативных свойств системы, называется поглотителем вибрации. Возможно комбинирование этих двух свойств одновременно с помощью динамических виброгасителей с трением..В большинстве случаев качественная оценка степени реализации целей защиты может осуществляться двумя способами:
1. определяют коэффициент защиты kw в виде отношения:
Кц =j _ поток энергии в данной точке при отсутствии ЗУ \поток энергии в данной точке при наличии ЗУ
2. определяют коэффициент защиты в виде отношения:
Кц j _ поток энергии на входе в ЗУ\поток энергии на выходе из ЗУ Эффективность защиты (дБ)
е= lOlgfc*
49. Защита от опасностей в техносфере. Защита от опасностей технических систем и производственных процессов. Защита от энергетических воздействий. Обобщенное защитное устройство и методы защиты
При решении задач защиты выделяют источник, приемник энергии и защитное устройство, которое уменьшает до допустимых уровней поток энергии к приемнику
В общем случае защитное устройство (ЗУ) обладает способностями: отражать, поглощать, быть прозрачным по отношению к потоку энергии. Пусть из общего потока энергии W+, поступающего к ЗУ, часть Wα, поглощается, часть W отражается и часть W– проходит сквозь ЗУ. Тогда ЗУ можно охарактеризовать следующими энергетическими коэффициентами: коэффициентом поглощения τ = WαW+, коэффициентом отражения d = a /W+, коэффициентом передачи τ = W/W. Очевидно, что выполняется равенство р + а + т = 1. Сумма α+τ =1– p=v (где v = W^W^) характеризует неотраженный поток энергии W, прошедший в ЗУ. Если α = 1, то ЗУ поглощает всю энергию, поступающую от источника, при р = 1 ЗУ обладает 100 %-ной отражающей способностью, а равенство τ = 1 означает абсолютную прозрачность ЗУ: энергия проходит через устройство без потерь.
В соответствии с изложенным можно выделить следующие принципы защиты:
1) принцип, при котором р→ 1; защита осущ-ся за счет отражательной способностиЗУ;
2) принцип, при котором α→1; защита осущ-сяза счет поглощательной способности ЗУ;
3) принцип, при котором τ→ 1; защита осущ-тся с учетом свойств прозрачности ЗУ.
На практике принципы обычно комбинируют, получая различные методы защиты. Наибольшее распространение получили методы защиты изоляцией и поглощением.
Методы изоляции используют тогда, когда источник и приемник энергии, являющийся одновременно объектом защиты, располагаются с разных сторон от ЗУ. В основе этих методов лежит уменьшение прозрачности среды между источником и приемником, т. е. выполнение условия τ→ 0. При этом можно выделить два основных метода изоляции: метод, при котором уменьшение прозрачности среды достигается за счет поглощения энергии ЗУ (рис. 6.27, а), и метод, при котором уменьшение прозрачности среды достигается за счет высокой отражательной способности ЗУ (рис.6.27,б ).
В основе методов поглощения лежит принцип увеличения потока энергии, прошедшего вЗУ. Существует 2 вида поглощения энергииЗУ: поглощение энергии самим ЗУ за счет ее отбора от источника в той или иной форме (характеризуется коэффициентом α, рис. 6.28, а) и поглощение энергии в связи с большой прозрачностью ЗУ (характеризуется коэффициентом τ, рис.6.28. б).
Рис. 6. 27. Методы изоляции при расположении источника и приемника с разных сторон от ЗУ; а – энергия поглощается; б– энергия отражается
Рис. 6.28. Методы поглощения при расположении источника и приемника соднойстороны от ЗУ:
а – энергия отбирается; б – энергия пропускается •
Качественная оценка степени реализации целей защиты осуществляться двумя способами:
1) определяют коэффициент защиты kw:
kв= поток энергии в данной точке при отсутствии ЗУ.
поток энергии в данной точке при наличии ЗУ '
2) определяют коэффициент защиты:
Эффективность защиты (дБ): e=10lgkв
50. Защита от опасностей в техносфере. Защита от опасностей технических систем и производственных процессов. Защита от вибрации.
Виброизоляция. Между источником вибрации и ее приемником, являющимся одновременно объектом защиты, устанавливают упруго-демпфирующее устройство – виброизолятор –с малым коэффициентом передачи. При возбуждении системы защитное устройство, расположенное между источником и приемником, воздействует на них с реакциями FR и FR..
Различают два вида возбуждения: силовое и кинематическое.
При силовом гармоническом возбуждении силой F1= Fmejwt цель защиты обычно состоит в уменьшении амплитуды силы FR, передаваемой на приемник. При кинематическом возбуждении цель защиты обычно заключается в уменьшении передаваемого смещения. Степень реализации этой цели характеризуют динамическим коэффициентом защиты kx, равным отношению амплитуды смещения источника к амплитуде смещения приемника. Можно показать, что kx= z/zr
В общем случае энергитический коэффициент защиты можно выразить в виде kW=kFkX.
В качестве виброизоляторов используют упругие материалы и прежде всего металлические пружины, резину, пробку, войлок. Выбор того или иного материала обычно определяется величиной требуемого статического прогиба и условиями, в которых виброизолятор будет работать
Резина имеет малую плотность, хорошо крепится к деталям, ей легко придать любую форму и она обычно используется для виброизоляции машин малой и средней.
Металлические пружины применяют обычно тогда, когда требуется большой статический прогиб или когда рабочие.
Динамическое виброгашение. Защита от вибраций методами поглощения, основанная на общих принципах осуществляется в виде динамического гашения и вибропоглощения.
При динамическом гашении виброэнергия поглощается ЗУ. Это устройство, отбирающее виброэнергию от источника – объекта защиты – на себя, называют инерционным динамическим виброгасителем. Его применяют для подавления моногармонических узкополосных колебаний. Защитное устройство, увеличивающее рассеяние энергии в результате повышения диссипативных свойств системы, называют поглотителем вибраций. Возможно применение комбинированных защитных устройств, использующих одновременно коррекцию упругоинерционных и диссипативных свойств системы. В этом случае говорят о динамических виброгасителях с трением. Инерционные динамические гасители применяют только в тех случаях, когда частота вынуждающей силы строго фиксирована в условиях эксплуатации (например, для гашения колебаний опор генераторов переменного тока)
Вибропоглощение. Вибропоглощение– метод снижения вибраций путем усиления в конструкции процессов внутреннего трения, рассеивающих виброэнергию в результате необратимого преобразования ее в теплоту при деформациях, возникающих в материалах, из которых изготовлена конструкция, и в местах сочленения ее элементов.
Метод вибропоглощения нацелен на получение повышенных значений коэффициента потерь в конструкции(табл. Значение)
В настоящее время вибропоглощение осуществляется преимущественно путем применения конструкционных материалов с повышенным значением коэффициента потерь и вибропоглощающих покрытий.
Перспективным в вибропоглощении является нанесение на колеблющиеся поверхности элементов конструкции высокоэффективных вибропоглощающих материалов. Они могут изготовляться на основе меди, свинца, олова, битумов и других материалов. Большое распространение получила многокомпонентная система на основе полимера, способного рассеивать механическую энергию в большом количестве при основных деформациях. Главными компонентами полимерной системы являются пластификаторы (придают полимеру требуемое сочетание свойств эластичности и пластичности) и наполнители(сообщают материалу необходимые эксплуатационные свойства).
Эффективность вибропоглощения
где Lη и Lη +. – уровни рассеиваемой энергии до и после осуществления вибропоглощающих мероприятий.
51. Защита от опасностей в техносфере. Защита от опасностей технических систем и производственных процессов Защита от шума.
Для уменьшения уровней шума применяются технические, строительно-акустические и организационные мероприятия, а также средства индивидуальной защиты (ГОСТ 12. 4. 051-87 - Средства индивидуальной защиты органа слуха). К этим мерам относятся: 1. Подавление шума в источниках (замена ударных взаимодействий деталей безударными; замена возвратно-поступательных движений вращательными, применять принудительное смазывание трущихся поверхностей, применение "малошумящих" материалов, статическая и динамическая балансировка деталей, применение глушителей шума, звукоизолирующих кожухов) 2. Предупреждение распространения шума - звукоизоляция и звукопоглощение. дБ и Для звукоизоляции применяются плотные, жесткие, массивные перегородки. При этом ослабление зависит от массы перегородки, а не от ее материала. Большее ослабление достигается при слоистых перегородках, с воздушными промежутками между слоями. При звукопоглощении звук ослабляется за счет поглощения звуковой энергии в порах материала перегородки. Наряду с пористыми материалами для звукопоглощения применяются специальные мастики, которыми покрываются перегородки и отдельные части машин. 3. Строительные и организационные меры: (увеличение расстояния от источника шума - концентрация цехов с большим уровнем шума и удаление их от других производственных помещений. Так как интенсивность шума в помещениях зависит не только от прямого, но и от отраженного звука, который может быть уменьшен за счет увеличения площади звукопоглощения помещения. Необходимо применять: покрытие внутренних поверхностей помещения звукопоглощающими облицовками; размещение в помещениях штучных звукопоглощателей, закрытие машин звукоизоляционными кожухами; устройство экранов (с покрытием их звукоизолирующими материалами) между машиной и рабочим местом; устройство звукоизолированных машин; рациональный режим труда и отдыха; сокращение времени нахождения в шумовых условиях; контроль уровней шума на рабочих местах. В качестве звукопоглощающего материала применяют ультратонкое стекловолокно, капроновое волокно, минеральную вату, древесноволокнистые и минераловатные плиты, пористый полтвинилхлорид и др. Толщина облицовок составляет 20-200 мм. В низких помещениях облицовывают только потолок, т. к. стены в них практически не влияют на отражение звука, а в высоких и вытянутых помещениях - облицовывают как стены, так и потолок. При некоторых производственных процессах, например, как клепка, обрубка, штамповка, зачистка трудно или невозможно эффективно снизить шум. 4. Индивидуальные средства защиты от шума. В случае невозможности снижения шума до нормативного вышеуказанными методами применяются средства индивидуальной защиты – противошумы: - наушники, закрывающие ушную раковину; - вкладыши, перекрывающие наружный слуховой канал (пробка); - шлемы, закрывающие часть головы и ушную раковину.
52. Защита от опасностей в техносфере. Защита от опасностей технических систем и производственных процессов. Защита от электромагнитных полей и излучений
Электромагнитные волны возникают при ускоренном движении электрических зарядов. Электромагнитные волны – это взаимосвязанное распространение в пространстве изменяющихся электрического и магнитного полей. Совокупность этих полей, неразрывно связанных друг с другом, называется электромагнитным полем. Источниками электромагнитных полей являются атмосферное электричество, космические лучи, излучение солнца, а также искусственные источники: различные генераторы, трансформаторы, антенны, лазерные установки, микроволновые печи, мониторы компьютеров, ЛЭП, измерительные приборы и др, Рассмотрим основные методы защиты от электромагнитных излучений. К ним следует отнести рациональное размещение излучающих и облучающих объектов, исключающее или ослабляющее воздействие излучения на персонал; ограничение места и времени нахождения работающих в электромагнитном поле; защита расстоянием, т. е. удаление рабочего места от источника электромагнитных излучений; уменьшение мощности источника излучений; использование поглощающих или отражающих экранов; применение средств индивидуальной защиты и некоторые др. Эффективность действия экрана, или эффективность экранирования (Э), может быть рассчитана по формуле: Э = Где I0 – плотность потока энергии в данной точке при отсутствии экрана Вт/м2; I – плотность потока энергии в той же точке при наличии экрана, Вт/м2;
Для защиты от электрических полей промышленной частоты, возникающих вдоль линий высоковольтных электропередач (ЛЭП), необходимо увеличивать высоту подвеса проводов линий, уменьшать расстояние между ними, создавать санитарно-защитные зоны вдоль трассы ЛЭП на населенной территории. В этих зонах ограничивается длительность работ, а также заземляются машины и оборудование.Особым видом электромагнитного излучения является лазерное излучение, которое генерируется в специальных устройствах, называемых оптическими квантовыми генераторами или лазерами. Эти устройства широко применяются в различных областях науки и техники, в том числе для обработки различных материалов (получение отверстий, резка и т.д.), в медицине (проведение различных операций), в системах связи для передачи сигналов по лазерному лучу, для измерения расстояний, для получения объемных изображений предметов – голограмм и в ряде других областей. При воздействии лазерного излучения на организм человека возникают различные биологические эффекты, которые зависят от энергетических и временных параметров излучения и в первую очередь от энергетической экспозиции в импульсе, длины волны и времени воздействия лазерного излучения, вида облучаемой ткани человеческого организма и ряда других факторов. Энергетическая экспозиция может быть рассчитана по формуле: Н = Ее t, где Н - энергетическая экспозиция; Ее - энергетическая освещенность (отношение энергии излучения, падающей на рассматриваемый участок поверхности, к его площади); t - время воздействия лазерного излучения. К основным коллективным средствам защиты от лазерного излучения относятся применение защитных экранов и кожухов; использование телевизионных систем наблюдения за ходом технологического процесса с использованием лазера, а также систем блокировки и сигнализации; ограждение лазерно-опасной зоны, размеры которой определяют или расчетным, или экспериментальным путем. Следует защищаться не только от прямого излучения лазера, но и от рассеянного и отраженного излучений. Для индивидуальной защиты от электромагнитного излучения применяют специальные комбинезоны и халаты, изготовленные из металлизированной ткани (экранируют электромагнитные поля), а для защиты от действия лазера обслуживающий персонал должен работать в технологических халатах, изготовленных из хлопчатобумажной или бязевой ткани светло-зеленого или голубого цвета.Для защиты глаз от воздействия электромагнитного излучения применяют очки марки 3П5-90, стекла которых покрыты диоксидом олова (SnO2), обладающим полупроводниковыми свойствами.
53.
Ионизирующее излучение вызывает в организме цепочку обратимых и необратимых изменений. Пусковым механизмом воздействия являются процессы ионизации и возбуждения атомов и молекул в тканях. Диссоциация сложных молекул в результате разрыва химических связей — прямое действие радиации. Ионизирующая радиация при воздействии на организм человека может вызвать два вида эффектов, которые клинической медициной относятся к болезням: детерминированные пороговые эффекты (лучевая болезнь, лучевой ожог, лучевая катаракта, лучевое бесплодие, аномалии в развитии плода и др.) и стохастические (вероятностные) беспороговые эффекты (злокачественные опухоли, лейкозы, наследственные болезни).
Доза эквивалентная HTR — поглощенная доза в органе или ткани умноженная на соответствующий взвешивающий коэффициент для данного излучения WR:
Ht,r = W r Dtr.
Единицей измерения эквивалентной дозы является Дж • кг"1, имеющий специальное наименование зиверт (Зв).
Значения WR для фотонов, электронов и мюонов любых энергий составляет 1, для а-частиц, осколков деления, тяжелых ядер —20.
Доза эффективная — величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органе НхТ на соответствующий взвешивающий коэффициент для данного органа или ткани Wf.
т
где Нт т — эквивалентная доза в ткани Т за время т.
Единица измерения эффективной дозы — Дж • кг"1, называемая зивертом (Зв).
54.
Чрезвычайно высокие потоки негативных воздействий создают чрезвычайные ситуации (ЧС), которые изменяют комфортное или допустимое состояние среды обитания и переводят жизнедеятельность в качественно иное состояние — состояние взаимодействия человека со средой обитания в условиях высокой травмоопасности или гибели.
Чрезвычайные ситуации подразделяются на локальные, местные, территориальные, региональные, федеральные и трансграничные.
К локальной относится ЧС, в результате которой пострадало не более 10 человек, либо нарушены условия жизнедеятельности не более 100 человек, либо материальный ущерб составляет не более 1 тыс. минимальных размеров оплаты труда на день возникновения чрезвычайной ситуации и зона чрезвычайной ситуации не выходит за пределы территории объекта производственного или социального назначения.
К местной относится ЧС, в результате которой пострадало свыше 10, но не более 50 человек, либо нарушены условия жизнедеятельно- сти свыше 100, но не более 300 человек, либо материальный ущерб составляет свыше 1 тыс., но не более 5 тыс. минимальных размеров оплаты труда на день возникновения чрезвычайной ситуации и зона чрезвычайной ситуации не выходит за пределы населенного пункта, города, района.
К территориальной относится ЧС, в результате которой пострадало от 50 до 500 человек, либо нарушены условия жизнедеятельности от 300 до 500 человек, либо материальный ущерб составил от 5 тыс. до 0,5 млн минимальных размеров оплаты труда и зона чрезвычайной ситуации не выходит за пределы субъекта Российской Федерации.
К региональной и федеральной соответственно относятся ЧС, в результате которой пострадало от 50 до 500 и более человек, либо нарушены условия жизнедеятельности от 500 до 1000 и свыше человек, либо материальный ущерб составляет от 0,5 до 5 млн и свыше минимальных размеров оплаты труда и зона чрезвычайной ситуации охватывает территорию двух субъектов РФ или выходит за их пределы.
К трансграничной относится ЧС, поражающие факторы которой выходят за пределы РФ или ЧС, которая произошла за рубежом и затрагивает территорию РФ.
Источником ЧС техногенного происхождения являются аварии на промышленных объектах. Под промышленным объектом как источником ЧС понимают также объекты транспортные, хозяйственные, административные и другие, если они относятся к категории опасных.
55.
ЧС военного времени могут возникать при применении оружия массового поражения (ОМП). Массовым поражением обладают ядерное, химическое и бактериологическое оружие. К ним можно отнести и разрабатываемые новые принципы воздействия — инфразву- ковое, лучевое и др.
Ядерное оружие. К наиболее мощным средствам ОМП относится ядерное оружие, состоящее из ядерных боеприпасов (авиационные бомбы, артиллерийские снаряды, боевые части ракет, морских торпед, глубинные бомбы и мины), средств доставки (носителей) и средств управления. При ядерном взрыве выделяется огромное количество энергии, образующейся при цепной реакции деления тяжелых ядер некоторых изотопов урана и плутония или термоядерной реакции синтеза легких ядер изотопов водорода (дейтерия, трития).
Химическое оружие. Под химическим оружием понимают совокупность отравляющих веществ (ОВ) и средства, с помощью которых их применяют. Химическое оружие предназначено для поражения незащищенных людей и животных путем заражения воздуха, продовольствия, кормов, воды, местности и расположенных на ней предметов.
Бактериологическое (биологическое) оружие. Оно представляет собой болезнетворные микробы и токсины, предназначенные для поражения людей, животных, растений и запасов продовольствия.
56.
Рассмотрим основные виды ЧС техногенного происхождения и методы оценки их параметров.
Аварийно химически опасные вещества, химически опасные объекты, зоны химического заражения при ЧС. Из большого числа вредных веществ, в том числе производимых и используемых в промышленности (см. п. 6.2), лишь сравнительно небольшая часть может быть отнесена к опасным и тем более к тем, которые могут привести к ЧС различного масштаба. Критерием для отнесения химического вещества к опасным служит уровень средней смертельной дозы. Химически опасным объектом (ХОО) называется объект, при аварии или разрушении которого могут произойти массовые поражения людей и загрязнения окружающей среды аварийно химически опасными веществами.
Пожары: физико-химические основы, параметры.
Пожар — это неконтролируемое горение вне специального очага. Оно представляет собой сложный физико-химический процесс превращения горючих веществ и материалов в продукты сгорания, сопровождаемый интенсивным выделением тепла и светового излучения.
Взрыв: физико-химические основы, виды ВВ, пожаровзрывоопас- ность технологических процессов на производстве.
Взрыв — быстро протекающий процесс физического или химического превращения веществ, сопровождающийся высвобождением большого количества энергии в ограниченном объеме, в результате которого в окружающем пространстве образуется и распространяется ударная волна, способная создать угрозу жизни и здоровью людей, нанести материальный ущерб и ущерб окружающей среде, стать источником ЧС.