Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Загрязнение воздушной среды помещений (характеристика, влияние на человека, способы и мероприятия по уменьшению негативного действия на человека).




 

 

Значение воздушной среды для человека. Воздушная среда (атмосфера) — газообразная оболочка земного шара, необходимое условие поддержания жизни на Земле. Без воздуха немыслимо сколько-нибудь продолжительное сохранение жизненных функций организма. Воздушная среда позволяет человеку ориентироваться в пространстве, через нее органами чувств воспринимаются зрительные, слуховые сигналы, позволяющие судить о состоянии окружающей среды. Воздушная среда существенно влияет на многие энергетические и гидрологические процессы, происходящие на поверхности Земли. Состояние воздушной среды в значительной степени определяет количество и качество солнечной радиации у поверхности Земли. В атмосфере образуются осадки, которые наряду с ветрами способствуют механическому разрушению горных пород, их выветриванию. Атмосфера является одним из главных факторов климатообразования, ее циркуляционная деятельность способствует формированию погоды в конкретном географическом регионе. Атмосфера служит источником некоторых видов сырья: из воздуха добывают азот, кислород, аргон и гелий.

Кроме того, воздух используется в промышленности как химический агент в различных технологических процессах (горение топлива, выплавка металла, процессы окисления), как физическая среда для переноса тепла (воздушное отопление, сушка).

Велико значение воздушной среды как разбавителя газообразных продуктов жизнедеятельности животных и человека, отходов производственной и хозяйственной деятельности. Через воздушную среду осуществляются процессы теплообмена, происходит отдача тепла посредством конвекции и потоиспарения, благодаря чему обеспечивается тепловой комфорт человека. Изменение свойств почвы, одежды, жилища тесно связано с состоянием воздушной среды. В процессе развития человеческого организма между ним и воздушной средой создается тесное взаимодействие, нарушение которого может привести к неблагоприятным изменениям в организме. Резкие изменения физических и химических свойств воздушной среды, загрязнение токсичными веществами и патогенными микроорганизмами могут способствовать развитию в организме человека изменений, приводящих к нарушению здоровья и снижению работоспособности. Гигиена призвана разработать мероприятия по оздоровлению воздушной среды с целью защиты организма от нарушений и изменений, связанных с неблагоприятным состоянием воздушной среды.

Воздушная среда неоднородна по физическим свойствам и вредным примесям, что связано с условиями ее формирования и загрязнения. Различают атмосферный воздух, воздух промышленных помещений, жилых и общественных зданий.

Физические свойства атмосферного воздуха (температура, влажность, подвижность, атмосферное давление, электрическое состояние) нестабильны и связаны с климатическими особенностями географического региона. Наличие в воздухе газообразных и твердых примесей (пыль и сажа) зависит от характера выбросов в атмосферу, условий разбавления и процессов самоочищения. На концентрацию вредных веществ в атмосфере влияют скорость и направление господствующих ветров, температура, влажность воздуха, осадки, солнечная радиация, химическая трансформация токсичных веществ в воздухе, количество, качество и высота выбросов в атмосферу и т.д.

В жилых и общественных зданиях физические свойства воздуха более стабильны, так как в этих зданиях поддерживается микроклимат благодаря вентиляции и отоплению. Газообразные примеси образуются в результате выделения в воздух продуктов жизнедеятельности людей и токсичных веществ из материалов и предметов обихода, выполненных из полимерных материалов, а также в виде продуктов горения бытового газа. На промышленных предприятиях свойства воздушной среды зависят от технологического процесса. В некоторых случаях физические свойства воздуха приобретают самостоятельное значение вредного профессионального фактора, а загрязнение воздуха токсичными веществами может привести к профессиональным отравлениям.

Строение земной атмосферы. Нижней границей атмосферы является поверхность Земли, верхний предел точно не установлен, полагают, что он находится на уровне 1300 км. Атмосфера имеет выраженное слоистое строение и включает в себя тропосферу, стратосферу, ионосферу.

Тропосфера — это наиболее плотные воздушные слои, прилегающие к земной поверхности. Ее толщина над различными широтами земного шара неодинакова: в средних широтах — 10...12 км над уровнем моря, на полюсах — 1...10, над экватором — 16...18 км.

Тропосфера пронизана вертикальными конвекционными потоками воздуха с относительно постоянным химическим составом и неустойчивыми физическими свойствами (колебаниями температуры, влажности, атмосферного давления и т.д.). Солнце нагревает поверхность почвы, от которой прогреваются нижние слои воздуха. С удалением от поверхности температура воздуха снижается, что в свою очередь приводит к вертикальному перемещению воздушных слоев, конденсации водяного пара, образованию облаков и выпадению осадков. Это снижение составляет в среднем 0,65 °С на каждые 100 м. Данная величина называется вертикальным температурным градиентом атмосферы. Во влажную безветренную погоду градиент может нарушаться, тогда теплый воздух остается у поверхности Земли, вертикальные конвекционные потоки ослабевают. Токсичные выбросы предприятий накапливаются в приземном воздушном слое.

На состоянии тропосферы отражаются все процессы, происходящие на земной поверхности. В тропосфере постоянно присутствуют пыль, сажа, разнообразные токсичные вещества, газы, микроорганизмы и т.д. Это особенно заметно в крупных промышленных регионах. Дополнительным источником загрязнения приземного воздуха становится интенсивное авиационное сообщение.

Над тропосферой на высоте до 50 км простирается стратосфера, для которой характерны значительная разреженность воздуха, ничтожная влажность, почти полное отсутствие облаков и пыли земного происхождения. Стратосфера имеет особый температурный режим. В средних широтах температура воздуха стратосферы достигает -56 °С, на экваторе доходит до -70...-80 °С. Такая температура в стратосфере неизменна до высоты 30 км. Выше начинается подъем температуры воздушных масс, и на высоте 40 км температура воздуха достигает -40...-50 °С. Выше 50 км температура воздуха вновь снижается.

В стратосфере под влиянием космического излучения и коротковолновой солнечной радиации молекулы воздуха, в том числе и кислорода, ионизируются, в результате чего образуются молекулы озона. Примерно 60 % общего количества озона располагается на высоте от 16 до 32 км, его максимальная концентрация наблюдается на уровне 25 км от поверхности Земли.

Над стратосферой на высоте до 80 км простирается мезосфера, на которую приходится лишь 5 % массы всей атмосферы.

Далее следует ионосфера, верхняя граница которой подвержена колебаниям в зависимости от времени суток и года и составляет от 500 до 1000 км. В ионосфере воздух сильно ионизирован. Ионизация и температура воздуха повышаются с высотой. Слой атмосферы, лежащий выше ионосферы и простирающийся до высоты 3000 км, составляет экзосферу, плотность которой почти не отличается от плотности безвоздушного космического океана. Еще больше разреженность в магнитосфере, в состав которой входят пояса радиации. По последним данным, магнитосфера располагается на высоте от 2000 до 50000 км, за верхнюю границу земной атмосферы можно принять высоту 50 000 км от поверхности Земли. Это граница газовой оболочки, которая окружает нашу планету.

В связи с активным освоением околоземного космического пространства возникла необходимость изучения многочисленных факторов, оказывающих вредное действие на человека при длительном пребывании на космических станциях, при проведении работ в открытом космосе. Успешное решение гигиенических проблем жизнеобеспечения человека в космических кораблях неотделимо от освоения космоса.

Гигиеническое значение физических свойств воздуха. При оценке воздушной среды следует учитывать ее физические свойства (температуру, влажность; подвижность воздуха, барометрическое давление, электрическое состояние); химические свойства (содержание компонентов воздуха и различных газообразных примесей); бактериальный состав; наличие механических примесей в виде пыли, сажи. Действие воздушной среды на организм комплексное, но каждый из компонентов специфичен прежде всего по действию на организм.

Физические свойства воздуха определяют теплообмен организма с окружающей средой. Теплообмен организма осуществляется благодаря процессам химической и физической терморегуляции.

Химическая терморегуляция обусловлена способностью организма изменять интенсивность обменных процессов. Накопление тепла в организме происходит как в результате окисления веществ, содержащихся в пище, и выработки тепла при мышечной работе, так и от лучистого тепла Солнца, нагретых предметов, теплого воздуха и горячей пищи.

Организм отдает тепло в процессе теплоотдачи, конвекции, излучения и испарения пота. Теплоотдача осуществляется при соприкосновении с холодными поверхностями. Конвекционная отдача тепла происходит при нагревании воздушных масс. Отдача тепла излучением возможна вблизи предметов, имеющих более низкую температуру, чем кожа человека. Организм также отдает тепло при испарении пота. Небольшое количество тепла выводится из организма с выдыхаемым воздухом и физиологическими отправлениями. Терморегуляционные механизмы функционируют под контролем центральной нервной системы, и в зависимости от ее состояния возможно изменение процессов как теплопродукции, так и теплоотдачи. В состоянии покоя и теплового комфорта теплопотери путем конвекции составляют 15,3%, излучения — 55,6%, испарения — 29,1 %.

Теплоотдача зависит от разницы температур поверхности тела человека и предметов, а также от теплопроводности этих предметов. Теплопроводность воздуха ничтожна, поэтому отдача тепла через неподвижный воздух исключена.

Интенсивность отдачи тепла конвекцией зависит от площади поверхности тела человека, разности температуры воздушной среды и тела, от скорости движения воздуха. Усиленные конвекционные токи способствуют быстрому охлаждению организма. При одной и той же температуре воздуха повышенная подвижность воздуха способствует более быстрому охлаждению кожи человека. Например, при температуре воздуха 18 °С разница температуры кожи при неподвижном воздухе и при ветре достигает 7 °С. Чем выше температура воздуха, тем слабее охлаждающий эффект ветра: при температуре воздуха 34 °С температура кожи при неподвижном воздухе и ветре не изменяется и составляет около 34 °С, т.е. теплый ветер способствует перегреванию организма (табл. 3.1).

В процессах теплообмена организма с окружающей средой большое значение имеет лучистый (радиационный) теплообмен. Согласно физическим законам, всякое тело при температуре выше абсолютного нуля излучает тепло в окружающее пространство. Теплоизлучение зависит только от теплового состояния нагретого предмета и не зависит от температуры окружающей среды.

С повышением температуры излучающего тела длина волн уменьшается, т.е. спектр облучения сдвигается в сторону коротких волн. Например, металл красного каления испускает длинноволновые инфракрасные лучи, оказывающие тепловое воздействие. При дальнейшем нагревании металла и переводе его в состояние белого каления спектр излучения сдвигается в сторону более коротких волн, включая волны светового излучения. Наряду с тепловым воздействием металл начинает светиться. Следовательно, зная длину волны с максимальной энергией излучения, можно предвидеть то или иное физиологическое воздействие и разработать конкретные меры защиты.

Лучистое тепло и тепло воздушных масс (конвекционное тепло) вызывают одно и то же субъективное ощущение тепла, но механизм и пути воздействия этих видов тепла на организм различны. Лучистое тепло — проникающее, конвекционное тепло воздействует на поверхность тела человека и, следовательно, глубоко не проникает.

Между человеком и окружающими предметами идет непрерывный обмен лучистым теплом. Если поверхность тела человека излучает столько тепла, сколько принимает от окружающих предметов, то радиационный баланс равен нулю. Если средняя температура окружающих предметов выше температуры кожи человека, то человек получает больше лучистого тепла, чем излучает сам, т.е. радиационный баланс положительный. Отрицательный радиационный баланс создается тогда, когда человек отдает лучеиспусканием больше тепла, чем получает от окружающих предметов. В случае резкого нарушения радиационного баланса наблюдается перегревание или охлаждение. Например, в горячих цехах возможно перегревание рабочих не только из-за высокой температуры воздуха, но и в результате интенсивного притока лучистого тепла от нагретых поверхностей, раскаленного металла и т.д. Холодные и сырые стены создают условия для отрицательного радиационного баланса, человек охлаждается, интенсивно излучая тепло в сторону холодных ограждений. При этом, несмотря на благоприятную температуру воздуха, человек часто ощущает тепловой дискомфорт. При сочетании радиационного охлаждения и низкой температуры воздуха наблюдается более быстрое и более глубокое охлаждение организма. Теплоотдача излучением одетого человека в зависимости от температуры окружающих предметов составляет, ккал/ч:

Температура воздуха является постоянно действующим фактором окружающей среды. Человек подвергается действию колебаний температуры воздуха в различных климатических районах, при изменении погодных условий, при нарушении температурного режима в жилых и общественных зданиях.

Влияние неблагоприятной температуры воздуха на организм наиболее выражено в производственных условиях, где возможны очень высокие или очень низкие температуры воздуха, или при работе на открытом воздухе.

При воздействии на организм высокой температуры (выше 35 °С) нарушается в первую очередь отдача тепла конвекцией, в этих условиях организм освобождается от излишнего тепла преимущественно потоиспарением.

На отдачу тепла потоиспарением существенно влияют влажность и подвижность воздуха. Так, при температуре воздуха выше 35 °С и умеренной влажности потеря влаги в результате потоиспарения может достигать 5 — 8 л/сут, в исключительных случаях — 10 л/сут. Вместе с потом из организма выделяются соли, среди которых большую долю составляют хлориды. С потом выделяются и водорастворимые витамины С и группы В. Потеря солей плазмой крови ведет к повышению вязкости крови, что затрудняет работу сердечно-сосудистой системы. При длительном воздействии высокой температуры воздуха нарушается деятельность органов пищеварения. Выделение из организма хлорид-ионов, прием большого количества воды ведут к угнетению желудочной секреции и снижению бактерицидности желудочного сока, что создает благоприятные условия для развития воспалительных процессов.

Высокая температура воздуха отрицательно сказывается на функциональном состоянии нервной системы, что проявляется ослаблением внимания, нарушением точности и координации движений, замедлением реакций. Это ведет к снижению качества работы и увеличению производственного травматизма.

У рабочих, постоянно подвергающихся воздействию высокой температуры воздуха, снижается иммунобиологическая активность, повышается общая заболеваемость. Резкое перегревание организма вызывает болезненность мышц, сухость во рту, нервно-психическое возбуждение и может привести к тепловому удару. Такие явления чаще всего возникают при тяжелом физическом труде в жарком влажном климате.

 

Понижение температуры и ослабление тактильной чувствительности кожи становятся наиболее чувствительной реакцией организма на изменение теплового состояния при охлаждении. Происходит изменение функционального состояния центральной нервной системы, что проявляется в своеобразном наркотическом действии холода, ведущем к ослаблению мышечной деятельности, резкому снижению реакции на болевые раздражения, адинамии и сонливости.

Местное охлаждение, особенно охлаждение ног, способствует развитию простудных заболеваний, что связано с рефлекторным снижением температуры слизистой оболочки носоглотки. Это явление учитывается при гигиенической оценке температурного режима жилых и общественных зданий посредством регламентации перепадов температуры воздуха по вертикали, которые не должны превышать 2,5 °С на 1 м высоты. Известны случаи отморожения нижних конечностей у солдат при температуре воздуха, близкой к нулю, из-за длительного вынужденного положения в окопах, которое приводило к нарушению кровообращения в конечностях («окопная», или «траншейная стопа»). Ноги быстро охлаждались в результате интенсивной теплоотдачи излучением в сторону холодных и сырых стен окопа. Переохлаждение усугублялось увлажнением одежды, которая становилась более теплопроводной, что приводило к большой потере тепла. Большое число отморожений и даже смертей от переохлаждения наблюдается при сочетании низкой температуры, высокой влажности и большой подвижности воздуха.

 

Влажность воздуха имеет большое значение, поскольку влияет на теплообмен с окружающей средой. Абсолютная влажность воздуха дает представление об абсолютном содержании водяных паров в граммах в 1 м3 воздуха, но не показывает степень насыщения воздуха парами. При одной и той же абсолютной влажности насыщение воздуха водяными парами будет различно при разной температуре. Чем ниже температура воздуха, тем меньше водяных паров необходимо для его максимального насыщения, и, наоборот, для максимального насыщения воздуха при высокой температуре абсолютная влажность должна быть выше.

При гигиеническом нормировании учитывают относительную влажность воздуха (в процентах) и дефицит его насыщения, т. е. разность максимальной и абсолютной влажностей воздуха. Эти величины влияют на процессы теплоотдачи человека путем потоиспарения. Чем больше дефицит влажности, тем суше воздух, тем больше водяных паров он может воспринимать, следовательно, тем интенсивнее может быть отдача тепла потоиспарением. Высокая температура переносится легче, если воздух сухой.

При температуре воздуха, близкой к температуре кожи, теплоотдача излучением и конвекцией резко снижена, но возможна теплоотдача через потоиспарение. При сочетании высокой температуры воздуха и высокой (более 90%) относительной влажности воздуха испарение пота практически исключено: пот выделяется, но не испаряется, поверхность кожи не охлаждается, наступает перегревание организма. При высоких температурах воздуха низкая и умеренная (до 70 %) относительная влажность способствует усиленному потоиспарению, что исключает перегревание. При низких температурах сухой воздух уменьшает теплопотери.

Неблагоприятное влияние сухого воздуха проявляется только при крайней степени его сухости. Чрезмерно сухой воздух при низкой (менее 20 %) относительной влажности иссушает слизистую оболочку носа, глотки и рта. На слизистых образуются трещины, которые легко инфицируются, что способствует развитию воспалительных явлений.

Подвижность воздуха влияет на теплоотдачу организма конвекцией и потоиспарением. При высокой температуре воздуха его умеренная подвижность способствует охлаждению кожи. Действие на организм чрезмерно сухого воздуха усугубляется при его большой подвижности. Горячий ветер не только вызывает перегревание, но и ухудшает самочувствие человека, снижает работоспособность. Мороз в тихую погоду переносится легче, чем при сильном ветре; наоборот, ветер зимой вызывает переохлаждение кожи в результате усиленной отдачи тепла конвекцией и увеличивает опасность обморожений. Повышенная подвижность воздуха рефлекторно влияет на процессы обмена веществ: по мере понижения температуры воздуха и увеличения его подвижности повышается теплопродукция.

 

Сильный (более 20 м/с) ветер нарушает ритм дыхания, механически препятствует выполнению физической работы и передвижению. Умеренный ветер оказывает бодрящее действие, сильный продолжительный ветер резко угнетает человека. Благоприятная подвижность атмосферного воздуха в летнее время составляет 1 — 5 м/с.

Комплексное воздействие воздушной среды на организм человека. Физические факторы воздушной среды воздействуют на организм человека комплексно. Это подтверждается тем, что при различных сочетаниях температуры, влажности, подвижности воздуха человек может испытывать одинаковые тепловые ощущения.

В зависимости от питания, одежды, объема выполняемой работы тепловое состояние человека изменяется в широких пределах. Объективная оценка теплового состояния человека необходима для гигиенического нормирования физических факторов воздушной среды. Тепловое состояние организма объективно отражают температура тела и кожи, пульс и частота дыхания, артериальное давление, газообмен, потоотделение и т.д. Существенное значение имеет изучение реакции нервной системы на термические раздражители. Кроме объективной оценки изменений функций организма изучают субъективные тепловые ощущения человека — «наипростейший субъективный сигнал объективных отношений организма к внешнему миру» (И.П.Павлов).

Комплексное влияние физических свойств воздушной среды наиболее выражено в микроклимате закрытых (жилых, общественных и промышленных) помещений. Формирование микроклимата зависит от деятельности человека, планировки и расположения помещений, свойств строительных материалов, климатических условий данной местности, от вентиляции и отопления.

Свойства строительных материалов, особенно их теплоемкость, в значительной степени определяют микроклиматические условия помещения. Дерево медленно нагревается и быстро отдает тепло, стены прогреваются в различной степени.

На формирование микроклимата помещений влияют также воздухопроницаемость, гигроскопичность строительных материалов. Чем они выше, тем существеннее будет снижение температуры воздуха в помещении при понижении температуры во внешней среде. Большое значение имеет и остекление помещения. В последние годы стали строить дома с большими оконными проемами. Такое «ленточное» остекление способствует нестабильности микроклимата помещения. У оконного стекла зимой формируются холодные потоки воздуха, летом — теплые, что ведет к существенным перепадам температуры воздуха по вертикали и горизонтали. При гигиеническом надзоре проводят оценки температурного режима помещения по измерению температуры воздуха в девяти точках: по вертикали на уровне 0,2; 1,0; 1,5 м от пола (зона линейных размеров «стандартного человека») и в трех точках по диагонали помещения: у наружной и внутренней стен и в центре помещения. Результаты позволяют определить перепады температуры воздуха в пространстве и оценить микроклимат помещения.

 

Микроклимат производственных помещений в значительной мере определяется технологическим процессом, числом работающих, характером вентиляционных устройств, типом отопления и др. В горячих, холодных цехах формируется особый микроклимат, который может вредно влиять на теплообмен, ухудшать самочувствие людей. В этих случаях микроклимат является вредным профессиональным фактором. В горячих цехах следует учитывать как истинную, так и климатическую температуру, т. е. температуру воздуха с учетом влияния потока инфракрасных лучей от нагретых предметов. Например, в горячих цехах климатическая температура может составлять 50...60 °С, при том что истинная температура не превышает 28...35 °С. При гигиеническом надзоре для измерения истинной температуры воздуха используют сухой термометр аспирационного психрометра, резервуар которого защищен металлическим кожухом от инфракрасных лучей.

Влияние загрязнения атмосферного воздуха на здоровье населения и гигиенические условия жизни в городах. Загрязнение атмосферного воздуха промышленных городов оказывает многообразное вредное воздействие. Токсичные вещества в атмосферном воздухе приводят к ухудшению здоровья, условий жизни и снижению работоспособности населения. Загрязнение атмосферного воздуха способствует снижению иммунобиологической резистентности организма, ухудшению показателей физического развития детей, повышению общей заболеваемости населения.

Малые концентрации токсичных веществ в атмосферном воздухе способствуют развитию у населения хронических отравлений. Симптомы отравления часто бывают маловыраженными, субъективные жалобы неопределенны, однако хроническое воздействие токсичного вещества приводит к снижению защитных сил организма. Возрастает частота хронических неспецифических заболеваний бронхолегочной системы, становятся более тяжелыми сердечно-сосудистые заболевания. Под влиянием монооксида углерода развивается более выраженный и ранний атеросклероз, изменяется сердечная проводимость. Действие пыли атмосферного воздуха на население менее выражено, чем действие пыли на рабочих промышленных предприятий, из-за меньшей концентрации и быстрого разбавления в атмосфере. Однако отмечены случаи развития у населения, проживающего в районах с сильным запылением атмосферного воздуха выбросами теплоэлектростанций, работающих на многозольном топливе, особенно у детей, стариков, лиц с хроническими заболеваниями бронхолегочной системы начальных пневмокониотических изменений в легких.

Загрязнение атмосферного воздуха крупнодисперсной пылью способствует глазному травматизму. В промышленных районах обращаемость населения за медицинской помощью по поводу инородного тела в глазу в 3...4 раза выше, чем в пригороде. Население, проживающее в районах с сильным загрязнением атмосферного воздуха, в 3...5 раз чаще болеет бронхитом, пневмонией, ангиной, чем население чистых районов.

Ориентировочная численность населения в России, проживающего на территориях с повышенным уровнем загрязнения атмосферного воздуха некоторыми вредными веществами, составляет, млн чел.:

 

 

В истории гигиены отмечено множество случаев массовых заболеваний населения в результате загрязнения атмосферного воздуха. В декабре 1930 г. в Бельгии в долине реки Маас в течение 5 дней установилась погода с высоким барометрическим давлением, туманом и слабым ветром. В долине произошла температурная инверсия, т. е. температура верхних слоев воздуха превышала температуру приземных слоев, что ухудшало условия вертикальных конвекционных токов и не способствовало перемешиванию воздуха. Жители долины ощущали резкий запах сернистого газа. Появились жалобы на нарушение функций верхних дыхательных путей и легких. За пять дней переболело несколько сотен человек, из них 60 чел. умерли. Особенно пострадали лица, имевшие хронические заболевания сердца и легких..

При вскрытии погибших отмечали геморрагические и некротические очаги на слизистых оболочках бронхов и в тканях легких, характерные для отравления сернистым газом. Эта катастрофа не была следствием аварии на заводах. Заводы работали обычным образом и выбрасывали в воздух то же количество сернистого газа, что и прежде. Причиной отравления населения стал токсичный туман, который во влажную безветренную погоду способствовал накоплению в воздухе сернистого газа и аэрозоля серной кислоты. Этот случай не единственный. В последнее время периодически отмечаются случаи появления раздражающих туманов, которые содержат комплексы органических соединений серы.

Известны подъемы заболеваемости населения, связанные с кратковременным увеличением концентрации токсичных веществ в воздухе. Описаны вспышки бронхиальной астмы у лиц, ранее не болевших, связанные с отравлениями выбросами нефтеперерабатывающих заводов или продуктами сжигания мусора. Отмечены аллергические реакции у населения в зоне выбросов заводов микробиологической промышленности.

Постоянное воздействие монооксида углерода особенно сказывается на состоянии здоровья милиционеров-регулировщиков на оживленных автомагистралях, в местах массового скопления автотранспорта. У них может развиться хроническое отравление с увеличением количества карбоксигемоглобина в крови, жалобами на головную боль, головокружение, расстройство сна, сердцебиение и раздражительность. Накопление в крови до 79 % карбоксигемоглобина обусловливает замедление психомоторных реакций, снижение цветоощущения, что влияет на профессиональную деятельность. Уровень карбоксигемоглобина в крови не должен превышать 2 %. Начальные изменения поведенческих реакций отмечаются у людей при его концентрации 2,5 %, а увеличение концентрации до 5 % провоцирует приступы стенокардии у больных.

Неблагоприятное действие на организм загрязнителей атмосферного воздуха проявляется также в накоплении некоторых веществ (свинца, кадмия и др.) в костях и тканях человека, что может привести к развитию хронических отравлений у людей, проживающих вблизи источников выброса в атмосферу этих соединений. Установлена связь между концентрацией свинца в воздухе и количеством свинца, накопленного в костях животных. Экспериментально доказано накопление свинца в костях мышей в условиях загрязнения атмосферного воздуха выбросами заводов цветной металлургии.

Длительное действие малых концентраций токсичных веществ может провоцировать обострение хронических заболеваний бронхолегочной системы, укорачивать ремиссии, повышать частоту осложнений. Все больше случаев специфических заболеваний, связанных с загрязнением атмосферного воздуха, отмечается у людей, не имевших профессионального контакта с конкретным токсичным веществом (фтором, бериллием, кадмием, марганцем, асбестом).

Если в 1940 г. рак бронхолегочной системы занимал 12-е место среди всех форм рака, то в 1960 г. — уже 5-е, а в 1980 г. — 2-е место. Это связывают с увеличением в воздухе городов канцерогенов и коканцерогенов. Развитие рака бронхолегочной системы связано и с табакокурением. Подсчитано, что при выкуривании 40 сигарет в день человек вдыхает 150 мг бенз(а)пирена дополнительно к бенз(а)пирену атмосферного происхождения.

Загрязнение атмосферного воздуха ухудшает условия жизни населения, что проявляется в снижении прозрачности атмосферы, уменьшении естественной освещенности, туманообразовании. Частота туманов в крупных промышленных городах увеличивается из года в год. Туманообразование связано с конденсацией паров влаги на взвешенных частицах пыли с формированием устойчивой токсичной пылегазовой смеси. Такие туманы длительно сохраняются, способствуют ухудшению здоровья и работоспособности населения, увеличению числа уличных травм, угнетающе действуют на людей.

Климатологи отмечают, что в связи с увеличением количества взвешенных частиц в воздухе городов облачность повышается на 5... 10 %, туманообразование летом увеличивается на 30 %, а число дней с осадками на 5...10 % больше, чем в сельской местности. Туманообразование ведет к уменьшению естественной освещенности до 40... 50 %, что требует дополнительных расходов на освещение улиц. Запыленность воздуха снижает солнечную радиацию на 15...20 %, причем ультрафиолетовая радиация летом снижается на 5 %, зимой — на 30 %, а в условиях тумана эти потери достигают 90%.

Загрязнение атмосферного воздуха неблагоприятно влияет и на растительность. Пыль закупоривает поры листьев, затрудняет процесс фотосинтеза. Листья желтеют, покрываются пятнами, задерживается рост деревьев, они легко погибают от вредителей и болезней. Наиболее губительно действует на зеленые насаждения сернистый газ, который нарушает фотосинтез и приносит растениям ощутимый вред. Наиболее чувствительны к загрязнению атмосферного воздуха хвойные и плодовые деревья, более устойчивы — липа, ясень, тополь.

Вокруг промышленных предприятий — источников вредных выбросов в атмосферу растительность намного беднее, чем в районах с незагрязненным воздухом. Часто вредное влияние выбросов на растительность распространяется на значительное расстояние от предприятия. С гибелью зеленых насаждений перестает действовать фильтр, очищающий воздух, так как на листьях и стволах осаждаются взвешенные частицы и газообразные примеси. Снижается роль зеленых насаждений как источника кислорода и фитонцидов, ослабляется их ветрозащитное действие. В пригородных хозяйствах крупных промышленных центров урожайность сельскохозяйственных культур и продуктивность животноводства снижены.

Гибель растений приносит ощутимый экономический ущерб, он усугубляется потерями ценных веществ в результате промышленных выбросов, разрушениями бетонных конструкций, ускорением коррозии металлических покрытий и ограждений. Загрязнение воздуха оказывает неблагоприятное эстетическое и гигиеническое воздействие, поскольку его следствием являются быстрое загрязнение стекол, мебели, занавесок, гибель комнатных растений, неприятные запахи, невозможность проветривания жилищ и т.п.

Таким образом, загрязнение атмосферного воздуха стало проблемой века, и только проведение квалифицированных санитарно-гигиенических и законодательных мероприятий сможет уменьшить вредное воздействие загрязнения атмосферного воздуха на человечество.

Гигиеническая характеристика воздушной среды закрытых помещений. В производственных помещениях в воздух могут поступать различные вредные вещества и пыль. Концентрации токсичных веществ в воздухе цехов определяются особенностями технологического процесса (химические реакции, дробление, плавка, механические процессы и т.д.), химическим составом и агрегатным состоянием сырья, промежуточных и конечных продуктов, герметизацией оборудования, аппаратурным оформлением цехов, степенью автоматизации технологического процесса, эффективностью вентиляции. При неблагоприятных сочетаниях указанных факторов концентрация пыли и газообразных токсичных веществ может превышать предельно допустимые уровни и приводить к формированию у рабочих профессиональных заболеваний.

Причины их возникновения и способы профилактики профессиональных заболеваний являются предметом специальной гигиенической дисциплины — гигиены труда.

Химический состав воздушной среды жилых и общественных зданий определяется составом атмосферного воздуха и специфическими загрязнителями. Это загрязнители антропогенного происхождения, т. е. газообразные продукты жизнедеятельности человека (диоксид углерода, аммиак и аммонийные соединения, сероводород, индол, скатол, летучие жирные кислоты и т.д.); токсичные вещества, выделяемые в воздух из полимерных строительных и отделочных материалов (фенол, формальдегид, трибутилфосфат и т.д.); загрязнители, связанные с хозяйственно-бытовым процессом (сжиганием газа, стиркой, приготовлением пищи). В конечном счете состояние воздушной среды в помещении определяется степенью коммунального благоустройства, санитарным состоянием помещения, эффективностью вентиляции и т.д.

Основную роль в загрязнении воздуха жилых и общественных зданий играют антропогенные загрязнители. Еще М. Петтенкофер предложил принять в качестве критерия чистоты воздуха этих помещений концентрацию диоксида углерода, равную 0,1 %. Однако в настоящий момент этот показатель не считают полностью адекватным, так как загрязнители полимерного происхождения могут накапливаться в значительных концентрациях даже при допустимом уровне диоксида углерода.

Для оценки состояния воздушной среды помещений кроме диоксида углерода необходимо определять содержание в воздухе аммиака и аммонийных соединений. Суммарная оценка органического загрязнения определяется величиной окисляемости воздуха. Необходимо также учитывать содержание в воздухе веществ полимерного происхождения, так как продукты, выделяемые полимерами, в большинстве случаев токсичны для человека. При санитарной оценке воздушной среды жилых и общественных зданий учитывают объем вентиляции и объем воздушной среды, приходящейся на 1 чел., источники загрязнения воздуха, количественные и качественные характеристики загрязнителей. Эти вопросы входят в круг обязанностей санитарных врачей, специалистов по коммунальной гигиене.

 





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 669 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2192 - | 2114 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.