Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Производная по направлению.




 

Пусть функция u = f (x, y, z) непрерывна в некоторой области D и имеет в этой области непрерывные частные производные. Выберем в рассматриваемой области точку M(x,y,z) и проведем из нее вектор S, направляющие косинусы которого cosα, cosβ, cosγ. На векторе S на расстоянии Δ s от его начала найдем точку М 1(х+ Δ х, у+ Δ у, z+ Δ z), где

Представим полное приращение функции f в виде:

где

После деления на Δ s получаем:

.

Поскольку предыдущее равенство можно переписать в виде:

 

(1)

Градиент.

Определение Предел отношения при называется производной от функции u = f (x, y, z) по направлению вектора S и обозначается .

При этом из (1) получаем:

(2)

 

Замечание 1. Частные производные являются частным случаем производной по направлению. Например, при получаем:

.

 

Замечание 2. Выше определялся геометрический смысл частных производных функции двух переменных как угловых коэффициентов касательных к линиям пересечения поверхности, являющейся графиком функции, с плоскостями х = х0 и у = у0. Аналогичным образом можно рассматривать производную этой функции по направлению l в точке М(х0, у0) как угловой коэффициент линии пересечения данной поверхности и плоскости, проходящей через точку М параллельно оси O z и прямой l.

Определение Вектор, координатами которого в каждой точке некоторой области являются частные производные функции u = f (x, y, z) в этой точке, называется градиентом функции u = f (x, y, z).

Обозначение: grad u = .

Свойства градиента.

1. Производная по направлению некоторого вектора S равняется проекции вектора grad u на вектор S. Доказательство. Единичный вектор направления S имеет вид eS ={cosα, cosβ, cosγ}, поэтому правая часть формулы (4.7) представляет собой скалярное произведение векторов grad u и es, то есть указанную проекцию.

2. Производная в данной точке по направлению вектора S имеет наибольшее значение, равное |grad u |, если это направление совпадает с направлением градиента. Доказательство. Обозначим угол между векторами S и grad u через φ. Тогда из свойства 1 следует, что |grad u |∙cosφ, (4.8) следовательно, ее наибольшее значение достигается при φ=0 и равно |grad u |.

3. Производная по направлению вектора, перпендикулярного к вектору grad u, равна нулю.

Доказательство. В этом случае в формуле (4.8)

4. Если z = f (x,y) – функция двух переменных, то grad f = направлен перпендикулярно к линии уровня f (x,y) = c, проходящей через данную точку.

 

 

Экстремумы функций нескольких переменных. Необходимое условие экстремума. Достаточное условие экстремума. Условный экстремум. Метод множителей Лагранжа. Нахождение наибольших и наименьших значений.

Определение 1. Точка М00, у0) называется точкой максимума функции z = f (x, y), если f (xo, yo) > f (x, y) для всех точек (х, у) из некоторой окрестности точки М0.

Определение 2. Точка М00, у0) называется точкой минимума функции z = f (x, y), если f (xo, yo) < f (x, y) для всех точек (х, у) из некоторой окрестности точки М0.

 

Замечание 1. Точки максимума и минимума называются точками экстремума функции нескольких переменных.

Замечание 2. Аналогичным образом определяется точка экстремума для функции от любого количества переменных.

 

Теорема 1 (необходимые условия экстремума). Если М00, у0) – точка экстремума функции z = f (x, y), то в этой точке частные производные первого порядка данной функции равны нулю или не существуют.

Доказательство.

Зафиксируем значение переменной у, считая у = у0. Тогда функция f (x, y0) будет функцией одной переменной х, для которой х = х0 является точкой экстремума. Следовательно, по теореме Ферма или не существует. Аналогично доказывается такое же утверждение для .

 

Определение 3. Точки, принадлежащие области определения функции нескольких переменных, в которых частные производные функции равны нулю или не существуют, называются стационарными точками этой функции.

 

Замечание. Таким образом, экстремум может достигаться только в стационарных точках, но не обязательно он наблюдается в каждой из них.

Примеры.

  1. Найдем стационарную точку функции z = x ² + y ². Для этого решим систему уравнений откуда х0 = у0 = 0. Очевидно, что в этой точке функция имеет минимум, так как при х = у = 0 z = 0, а при остальных значениях аргументов z > 0.
  2. Для функции z = xy стационарной точкой тоже является (0, 0), но экстремум в этой точке не достигается (z ( 0, 0) = 0, а в окрестности стационарной точки функция принимает как положительные, так и отрицательные значения).

 

Теорема 2 (достаточные условия экстремума). Пусть в некоторой окрестности точки М00, у0), являющейся стационарной точкой функции z = f (x, y), эта функция имеет непрерывные частные производные до 3-го порядка включительно. Обозначим Тогда:

1) f (x, y) имеет в точке М0 максимум, если AC – B ² > 0, A < 0;

2) f (x, y) имеет в точке М0 минимум, если AC – B ² > 0, A > 0;

3) экстремум в критической точке отсутствует, если AC – B ² < 0;

4) если AC – B ² = 0, необходимо дополнительное исследование.

Пример. Найдем точки экстремума функции z = x ² - 2 xy + 2 y ² + 2 x. Для поиска стационарных точек решим систему . Итак, стационарная точка (-2,-1). При этом А = 2, В = -2, С = 4. Тогда AC – B ² = 4 > 0, следовательно, в стационарной точке достигается экстремум, а именно минимум (так как A > 0).

Условный экстремум.

Определение 4. Если аргументы функции f (x1, x2,…, xn) связаны дополнительными условиями в виде m уравнений (m < n):

φ1 (х1, х2,…, хn) = 0, φ2 (х1, х2,…, хn) = 0, …, φm (х1, х2,…, хn) = 0, (1)

где функции φi имеют непрерывные частные производные, то уравнения (1) называются уравнениями связи.

Определение 5. Экстремум функции f (x1, x2,…, xn) при выполнении условий (1) называется условным экстремумом.

Замечание. Можно предложить следующее геометрическое истолкование условного экстремума функции двух переменных: пусть аргументы функции f(x,y) связаны уравнением φ (х,у) = 0, задающим некоторую кривую в плоскости О ху. Восставив из каждой точки этой кривой перпендикуляры к плоскости О ху до пересечения с поверхностью z = f (x,y), получим пространственную кривую, лежащую на поверхности над кривой φ (х,у) = 0. Задача состоит в поиске точек экстремума полученной кривой, которые, разумеется, в общем случае не совпадают с точками безусловного экстремума функции f(x,y).

Определим необходимые условия условного экстремума для функции двух переменных, введя предварительно следующее определение:

Определение 6. Функция L (x1, x2,…, xn) = f (x1, x2,…, xn) + λ1φ1 (x1, x2,…, xn) +

+ λ2φ2 (x1, x2,…, xn) +…+λmφm (x1, x2,…, xn), (2)

где λi некоторые постоянные, называется функцией Лагранжа, а числа λiнеопределенными множителями Лагранжа.

Теорема (необходимые условия условного экстремума). Условный экстремум функции z = f (x, y) при наличии уравнения связи φ (х, у) = 0 может достигаться только в стационарных точках функции Лагранжа L (x, y) = f (x, y) + λφ (x, y).

Доказательство. Уравнение связи задает неявную зависимость у от х, поэтому будем считать, что у есть функция от х: у = у(х). Тогда z есть сложная функция от х, и ее критические точки определяются условием: . (3)

Из уравнения связи следует, что . (4)

Умножим равенство (4) на некоторое число λ и сложим с (3). Получим:

, или .

Последнее равенство должно выполняться в стационарных точках, откуда следует:

(5)

Получена система трех уравнений относительно трех неизвестных: х, у и λ, причем первые два уравнения являются условиями стационарной точки функции Лагранжа. Исключая из системы (5) вспомогательное неизвестное λ, находим координаты точек, в которых исходная функция может иметь условный экстремум.

Замечание 1. Проверку наличия условного экстремума в найденной точке можно провести с помощью исследования частных производных второго порядка функции Лагранжа по аналогии с теоремой 2.

Замечание 2. Точки, в которых может достигаться условный экстремум функции f (x1, x2,…, xn) при выполнении условий (1), можно определить как решения системы (6)

Пример. Найдем условный экстремум функции z = xy при условии х + у = 1. Составим функцию Лагранжа L(x, y) = xy + λ (x + y – 1). Система (6) при этом выглядит так:

, откуда -2λ=1, λ=-0,5, х = у = -λ = 0,5. При этом L (x, y) можно представить в виде L (x, y) = -0,5 (x – y)² + 0,5 ≤ 0,5, поэтому в найденной стационарной точке L (x, y) имеет максимум, а z = xy – условный максимум.

 

 





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 1219 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если вы думаете, что на что-то способны, вы правы; если думаете, что у вас ничего не получится - вы тоже правы. © Генри Форд
==> читать все изречения...

2260 - | 2183 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.