Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Определённый интеграл, его свойства и геометрический смысл




Пусть функция определена на отрезке Произведём разбиение (см. Р5)

отрезка на частичные отрезки и выберем произвольно точки Вычислим значения

и составим так называемую интегральную сумму

Определение 3. Если существует конечный предел интегральных сумм:

и если этот предел не зависит от вида разбиения и выбора точек то его называют определённым интегралом от функции на отрезке Обозначение: При этом саму функцию называют интегрируемой на отрезке

(заметим, что число называется диаметром разбиения ).

Пусть теперь функция По разбиению строится ступенчатая фигура (см. Р6), состоящая из прямоугольников высоты и длиной основания, равной Площадь этой ступенчатой фигуры (достройте её самостоятельно) равна интегральной сумме и эта площадь будет приближённо равна площади криволинейной трапеции[2] т.е. причём это равенство будет тем точнее, чем меньше диаметр разбиения и оно становится точным при

Мы пришли к следующему геометрическому смыслу определённого интеграла:

интеграл численно равен площади криволинейной трапеции с верхней границей, описываемой уравнением

Замечание 3. В определении 3 интеграла предполагается, что отрезок интегрирования ориентирован от до (т.е. ). В случае противоположной ориентации отрезка

(т.е. при ) полагаем по определению Также полагаем по определению, что

Перейдём к формулировке свойств определённого интеграла.

Ограниченность подынтегральной функции. Если функция интегрируема на отрезке то она ограничена на этом отрезке (т.е. ).

Линейность интеграла. Если функции и интегрируемы на отрезке то на этом отрезке интегрируема и любая их линейная комбинация и имеет место равенство

Аддитивность интеграла. Если функция интегрируема на максимальном из отрезков то она интегрируема и на двух других отрезках, причём имеет место равенство

Далее везде предполагаем, что

Монотонность интеграла. Если функции и интегрируемы на отрезке и то

Интегрируемость модуля. Если функции интегрируема на отрезке то на этом отрезке интегрируема и функция причём имеет место неравенство

Теорема о среднем для интеграла.Пусть функция непрерывна на отрезке Тогда существует точка такая, что (геометрический смысл этой теоремы состоит в том, что существует прямоугольник с основанием и высоты равновеликий криволинейной трапеции).

Доказательство. Пусть (по теореме Вейерштрасса значения и функцией достигаются). Имеем поэтому из свойства монотонности интеграла отсюда получаем

Последние неравенства показывают, что значение является промежуточным для функции на отрезке а, значит, по теореме Больцано-Коши существует такое, что

Теорема доказана.

Рассмотрим ещё несколько примеров, которые демонстрируют простейшие приёмы интегрирования.

 

 


[1] Здесь и всюду далее с тем, чтобы не прерывать выкладки, в квадратных скобках будем указывать соответствующие замены переменных или формулы, необходимые для преобразований исходных выражений.

[2] На рис. Р6: – это трапеция ограниченная сверху кривой снизу– осью, с боков– прямыми и





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 1297 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Стремитесь не к успеху, а к ценностям, которые он дает © Альберт Эйнштейн
==> читать все изречения...

2201 - | 2158 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.