Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


П.1. Нормальные системы линейных однородных дифференциальных

Нормальные системы обыкновенных дифференциальных уравнений.

 

Определение. Совокупность соотношений вида:

где х - независимая переменная, у1, у2,…,уn – искомые функции, называется системой дифференциальных уравнений первого порядка.

 

Определение. Система дифференциальных уравнений первого порядка, разрешенных относительно производных от неизвестных функций называется нормальной системой дифференциальных уравнений.

Такая система имеет вид:

(1)

 

Для примера можно сказать, что график решения системы двух дифференциальных уравнений представляет собой интегральную кривую в трехмерном пространстве.

 

Теорема. (Теорема Коши). Если в некоторой области (n-1) –мерного пространства функции непрерывны и имеют непрерывные частные производные по , то для любой точки этой области существует единственное решение

системы дифференциальных уравнений вида (1), определенное в некоторой окрестности точки х0 и удовлетворяющее начальным условиям

 

Определение. Общим решением системы дифференциальных уравнений вида (1) будет совокупность функций , , … , которые при подстановке в систему (1) обращают ее в тождество.

 

 

П.1. Нормальные системы линейных однородных дифференциальных

уравнений с постоянными коэффициентами.

 

При рассмотрении систем дифференциальных уравнений ограничимся случаем системы трех уравнений (n = 3). Все нижесказанное справедливо для систем произвольного порядка.

 

Определение. Нормальная система дифференциальных уравнений c постоянными коэффициентами называется линейной однородной, если ее можно записать в виде:

(2)

 

Решения системы (2) обладают следующими свойствами:

 

1) Если y, z, u – решения системы, то Cy, Cz, Cu, где C = const – тоже являются решениями этой системы.

2) Если y1, z1, u1 и y2, z2, u2 – решения системы, то y1 + y2, z1 + z2, u1 + u2 тоже являются решениями системы.

 

Решения системы ищутся в виде:

Подставляя эти значения в систему (2) и перенеся все члены в одну сторону и сократив на ekx, получаем:

Для того чтобы полученная система имела ненулевое решение необходимо и достаточно, чтобы определитель системы был равен нулю, т.е.:

 

В результате вычисления определителя получаем уравнение третьей степени относительно k. Это уравнение называется характеристическим уравнением и имеет три корня k1, k2, k3. Каждому из этих корней соответствует ненулевое решение системы (2):

 

Линейная комбинация этих решений с произвольными коэффициентами будет решением системы (2):

 

Пример 1. Найти общее решение системы уравнений:

Решение. Составим характеристическое уравнение:

 

Решим систему уравнений:

 

Для k1:

Полагая (принимается любое значение), получаем:

 

Для k2:

Полагая (принимается любое значение), получаем:

 

Общее решение системы:

 

Этот пример может быть решен другим способом:

 

Решение. Продифференцируем первое уравнение:

Подставим в это выражение производную у¢ = 2 x + 2 y из второго уравнения.

 

Подставим сюда у, выраженное из первого уравнения:

 

 

Обозначив , получаем решение системы:

 

Пример 2. Найти решение системы уравнений

 

Решение. Эта система дифференциальных уравнений не относится к рассмотренному выше типу, т.к. не является однородным (в уравнение входит независимая переменная х).

 

Для решения продифференцируем первое уравнение по х. Получаем:

Заменяя значение z’ из второго уравнения получаем: .

С учетом первого уравнения, получаем:

Решаем полученное дифференциальное уравнение второго порядка.

Общее решение однородного уравнения:

 

Теперь находим частное решение неоднородного дифференциального уравнения по формуле

 

Общее решение неоднородного уравнения:

Подставив полученное значение в первое уравнение системы, получаем:

Пример 3. Найти решение системы уравнений:

Решение. Составим характеристическое уравнение:

 

1) k = -1.

Если принять g = 1, то решения в этом случае получаем:

 

2) k2 = -2.

Если принять g = 1, то получаем:

 

3) k3 = 3.

Если принять g = 3, то получаем:

 

Общее решение имеет вид:

 

Пример 4. Найти частное решение системы уравнений, удовлетворяющее начальным

условиям:

 

 

 

Примеры. Найти решение систем уравнений:

 

 

 

 

Пример. Найти частное решение системы уравнений, удовлетворяющее начальным

условиям:

 

 

Пример. Найти решение системы уравнений:

 



<== предыдущая лекция | следующая лекция ==>
Умственный возраст: Альфред Бине | Эмоциональный настрой, деление на группы (1 мин)
Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 315 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2376 - | 2185 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.