Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Интерпретации исчисления высказываний




Семантика исчисления L определяется с помощью произвольной функции е:S {0,1}=I, удовлетворяющей для всех А,В S соотношениям и е(А В)=е(А) е(В).

Функция е называется интерпретацией исчисления L.

Лемма 1 (об интерпретации исчисления L). Для каждой функции f: Р I, заданной на множестве букв исчисления L, существует единственная интерпретация еf: S I исчисления L, ограничение которой на Р равно f, в том смысле, что
еf(p) = f(p), для всех p P.

Доказательство. Пусть S0 = P, Sn+1 = Sn { A: A Sn} {(A B):A,B Sn}. Утверждение леммы доказывается по индукции. Положим ef(A)=f(A) для A S0. Предполагая, что ef уже определена на Sn, продолжим её на Sn+1 следующим образом: Если А= В, для некоторого В Sn, то положим ef(A) = ; аналогично, в случае A=(B C) при некоторых В, С Sn, положим ef(B C) = ef(B) ef(C). В результате получаем функцию , ограничение которой на Р равно f.

Формула А исчисления L называется тавтологией, если е(А)=1, для любой интерпретации е:S I исчисления L.

Теорема (о полноте). Формула А исчисления высказываний L является тавтологией тогда и только тогда, когда она является теоремой исчисления L.

Доказательство. Если формула А является теоремой исчисления L, то, поскольку аксиомы являются тавтологиями и применение MP к тавтологиям Р и Р Q даёт тавтологию, мы можем заключить, что А – тавтология. Это доказывает, что каждая теорема является тавтологией. Для доказательства обратного утверждения нам понадобится следующая лемма.

Лемма 2. Пусть формула А содержит переменные а1, а2, …, аn, и пусть задана некоторая функция f: { а12,…,аn } I={0,1}. Тогда L А’, где и А’ обозначают следующие формулы:

Здесь ef обозначает интерпретацию исчисления L для случая, когда Р={ а12,…,аn}, по лемме об интерпретации ef определяется функцией f единственным образом.

Доказательство леммы проведем по индукции, по количеству логических связок и в формуле А. В случае, когда А = а – переменная, имеем: а L а и а L а.

Пусть А = В. Если ef(B) = 1, то ef(A) = 0 и А’ = А = В. По предположению индукции L В. Пользуясь теоремой L В В, получаем: L В = А’. Если же ef(B) = 0, то ef(A) = 1 и А’ = А= В. По предположению индукции: L В и В =А’.

Рассмотрим случай А = (В С). По предположению индукции:

L В’ и L С’.

Если ef(B) = 0, то независимо от значения ef(C) имеем: ef(A)=1 и В’ = В, А’ = А. Но L В. С помощью теоремы L В С), получаем: L В С.

Если ef(B) = 1, то возможны 2 случая: – ef(C) = 1 или ef(C) = 0. В случае ef(C) = 1 имеем: ef(A) = 1 и С’ = С, А’ = А = (В С). Имеем: L С и
L С С) (по аксиоме А1), следовательно, L В С. В случае ef(В) = 1 и ef(С) = 0 имеют место: А’ = A= (B C), B’ = B, C’ = C. Имеем:

L В, L С.

Пользуясь теоремой L В ( С С)), получаем:

L С) =А’. Лемма доказана.

Вернёмся к доказательству теоремы о полноте. Пусть А – тавтология. Тогда по доказанной лемме: L А, ибо ef(A) = 1 для любой интерпретации букв . Значит, существуют выводы: L А, и L А. По теореме о дедукции: L аn А и L an А. Пользуясь теоремой Ln А) (( аn А) А) и применяя MP, получаем: L А. Повторяя этот процесс ещё n – 1 раз, приходим к теореме: L А, что и требовалось доказать.

Упражнение

Доказать выводимость формул:

L В В,

L В С),

L В ( С С))

Следствие (теорема о непротиворечивости). Исчисление высказываний L непротиворечиво в том смысле, что не существует формулы А исчисления L, для которых А и А были бы теоремами.

Доказательство. По теореме о полноте, каждая теорема исчисления является тавтологией. Но отрицание тавтологии не является тавтологией, значит, ни для какой формулы А невозможно, чтобы А и А были теоремами.






Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 383 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наглость – это ругаться с преподавателем по поводу четверки, хотя перед экзаменом уверен, что не знаешь даже на два. © Неизвестно
==> читать все изречения...

3093 - | 2683 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.