Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Основное электротехническое




ОБОРУДОВАНИЕ

При разработке схемы развития энергосистемы, выборе парамет­ров и конфигурации электрической сети, выполнении проектов элект­ростанций и ПС проводятся необходимые расчеты с целью проверки работоспособности электрической сети в нормальных и послеаварий-ных режимах. Расчеты базируются на параметрах оборудования элект­ростанций (генераторы) и основного электротехнического оборудова­ния ПС (трансформаторы, выключатели и др.), показатели которых рассматриваются ниже.

ГЕНЕРАТОРЫ

Турбо- и гидрогенераторы

В зависимости от рода первичного двигателя синхронные генера­торы делятся на турбогенераторы (с приводом от паровых или газовых турбин) и гидрогенераторы (с приводом от водяных турбин). Обозна­чения типов синхронных генераторов приведены ниже.

Турбогенераторы Т Г В В Ф
Турбогенератор........................................................................
  газовое....................
Охлаждение водородное............. водяное..................... форсированное........
Мощность, МВт Количество полюсов  
Гидрогенераторы
Синхронный генератор............................................................ С
Исполнение   Капсулышй........................................... горизонтальный..... вертикальный......... .................................. Г В К О В Ф
Обратимый........................................... Охлаждение   .................................. водяное..................... форсированное........  
Наружный диаметр, длина активной стали, см Количество полюсов    
       

Турбогенераторы выполняются с горизонтальной осью вращения. Диаметр ротора турбогенератора значительно меньше, чем его актив­ная длина, ротор обычно имеет неявнополюсное исполнение. Предель­ный диаметр ротора при частоте вращения 3000 об/мин по условиям механической прочности составляет 1,2–1,25 м. Активная длина рото­ра по условиям механической жесткости не превышает 6,5 м.

Стремление к увеличению единичной мощности турбогенераторов реализуется за счет внедрения более интенсивных способов охлажде­ния без заметного увеличения габаритных размеров. Турбогенераторы мощностью более 50 МВт изготавливаются с водородным или жидко­стным охлаждением обмоток. Основные технические данные турбоге­нераторов мощностью 60 МВт и более приведены в табл. 5.1.

Асинхронизированные турбогенераторы обладают возможностью обеспечивать устойчивую работу с глубоким потреблением и большим диапазоном регулирования реактивной мощности. Применение асин-хронизированных турбогенераторов основывается на тех же принци­пах, что и при выборе средств компенсации реактивной мощности дру­гих видов. Основные технические данные выпускаемых и разрабатыва­емых асинхронизированных турбогенераторов приведены в табл. 5.2.

Гидрогенераторы выполняются преимущественно с вертикальной осью вращения. Турбина располагается под гидрогенератором, и ее вал, несущий рабочее колесо, сопрягается с валом генератора с помощью фланцевого соединения. Так как частота вращения мала, а число полю­сов велико, ротор генератора выполняется с большим диаметром и срав­нительно малой активной длиной. Относительно небольшая частота вращения (60–600 об/мин в зависимости от напора воды) определяет большие размеры (до 20 м в диаметре) и массы (до 1500 т) активных и конструктивных частей гидрогенераторов. Как правило, гидрогенера­торы выполняются с вертикальным расположением вала. Исключение составляют гидрогенераторы с большой частотой вращения и капсуль-ные гидрогенераторы, которые выполняются горизонтальными. Основ­ные технические данные гидрогенераторов мощностью 52,4 МВт и бо­лее приведены в табл. 5.3.

Данные о мощности генераторов соответствуют их номинальному режиму работы. В часы максимума реактивной нагрузки иногда требует­ся работа генератора с пониженным cos (p. Длительная работа турбогене­ратора в режиме синхронного компенсатора с перевозбуждением допус­кается только при токе возбуждения не выше номинального. У генерато­ров с непосредственным охлаждением, как правило, cos φ ≤ 0,95–0,96. При повышении cos φ до 1,0 длительно могут работать только генерато­ры с косвенным охлаждением. Максимальная реактивная нагрузка гене­ратора при работе в режиме синхронного генератора с недовозбуждением определяется на основании тепловых испытаний и может быть оце­нена (для агрегатов 200 и 300 МВт) по рис. 5.1.

Полная мощность гидрогенератора, как правило, не зависит от cos φ и равна номинальной, если гидрогенератор приспособлен для работы в режиме синхронного компенсатора (режим работы определяется при выполнении проекта ГЭС).

В аварийных режимах допускается перегрузка генератора по токам статора и ротора согласно техническим условиям. Если в технических условиях соответствующие указания отсутствуют, кратковременные перегрузки по току статора принимаются по табл. 5.4. Данные по допу­стимой перегрузке по току ротора генераторов с непосредственным ох­лаждением приведены в табл. 5.5. Допустимая перегрузка генераторов с косвенным охлаждением обмоток определяется допустимой перегруз­кой статора.

Моменты инерции некоторых паровых турбин имеют следующие значения:

Тип турбины К-100-90 К-150-130 К-200-130
Момент инерции, т∙м2 18,7 28,5  
Тип турбины К-300-240 К-500-240 К-800-240
Момент инерции т∙м2      

Моменты инерции гидротурбин составляют примерно 10 % момента инерции присоединенных к ним гидрогенераторов.


Таблица 5.1





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 465 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2240 - | 2072 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.135 с.